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Definite causal order
(general relativity)

timelike worldline
/’B lightlike worldline

In all our theories (quantum
gravity theories excluded) causal
relations are definite:

future
light

cone

An event B is contained in the

7 causal future of an event A if there
hypersurface of exists a future-directed space-
AEAonety time path connecting A to B such
that the tangent vector to this path
Is everywhere time-like or null.
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light //
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Picture taken from: https://www.pitt.edu/~jdnorton/teaching/HPS 0410/chapters/spacetime/



Definite causal order
(quantum information)

b.-l.. > pla,blz,y) = p(blz,y)
Y :
p(a, blz,y) / > pla,blz,y) = p(alz)
b
\CL:-]. a Causal relation is definite:
4 A can signal to B, but B cannot signal to A

One-directional signalling
“from the past to the future”

C. B., Nature Physics 10, 259-263 (2014).
C. Branciard, M. Araujo, F. Costa, A. Feix, and C. B., New J. Phys. 18, 013008 (2016).



, ... once we embark on constructing a quantum theory of
gravity, we expect some sort of quantum fluctuations in the
metric, and so also in the causal structure. But in that case,
how are we to formulate a quantum theory with a fluctuating
causal structure?”

Butterfield and Isham, in Physics Meets Philosophy at
the Planck Scale: Contemporary Theories in Quantum
Gravity, C. Callender and N. Huggett, eds. Cambridge
University Press, 2001.



Towards Quantum Gravity: A
Framework for Probabilistic Theories
with Non-Fixed Causal Structure

Lucien Hardy
Perimeter Institute,
31 Caroline Street North,
Waterloo, Ontario N2L 2Y5, Canada

February 4, 2008

Abstract

General relativity is a deterministic theory with non-fixed causal struc-
ture. Quantum theory is a probabilistic theory with fixed causal struc-
ture. In this paper we build a framework for probabilistic theories with
non-fixed causal structure. This combines the radical elements of general
relativity and quantum theory. We adopt an operational methodology
for the purposes of theory construction (though without committing to
operationalism as a fundamental philosophy). The key idea in the con-
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Events specified operationally, without explicitly
relying on a background classical spacetime.
(,diffeomorphism invariance®)
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“Superpositions of causal structures™?
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“Superpositions of causal structures™?

\7(!0>|9W> +11)9))”

1957 Chapel Hill Conference, Richard Feynman



A problem

In standard formulation of quantum theory, time-like (& light-like) and
space-like separated scenarios are mathematically described in very
different ways.
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Outline

The notion of event & causality

Framework for quantum mechanics with no global causal
structure:

Causally non-separable processes (“indefinite causal order”)
Causal inequalities
The quantum switch

Advantages in quantum computation and communication

Physical realization of causally non-separable processes
via superposition of large masses



Intuitive picture
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,causal® region

Locally causal, globally indefinite



Intuitive picture

Globally causal



Local space-time patch

Output Hilbert space H 2
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Quantum
(CP) map M
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Input Hilbert space H 1



Operational view: Local quantum laboratory

Output Hilbert space H M)z (p)
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The Choi-Jamilolkowski isomorphism

M‘ép)
M:LHY) = LK) e M e L(HY) @ L(H)
= (Mea1)(|2") (7)) Z| VIt @ M(Ji) ()2 ?

where D) —ZU 1]4)2

Inverse isomorphism: M(p) = Tri[M(p" @ 1)]



General quantum correlations
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Process matrix, describe the causal relations between the labs



Characterisation of processes

Theorem: The positivity and normalisation of the probabilities imply

W >0, W=LyW
A

Projection onto a subspace of process
matrices with no causal loops

Forbidden processes (producing the grandfather paradox):

WA1A2 ® WBlBQ WA2B1 ® WBQAl
AZ BZ AZ BZ

Aq B, Aq B,
Single Loops Double Loops
0. Oreshkov, F. Costa, C.B., Nature Communication 3: 1092 (2012).



Characterisation of processes

Allowed processes: Example of a channel:
WAlAQBl X ]]_BQ |¢>A1 ‘]].>>A2B1 — W>A1 Z ‘j>A2 ‘j>B1
J

B
Az\ '
A7 W~

1

States
Space-like separation

WAl B1 ® ]]_AQBQ

Channel from Ato B
Time-like separation

Process matrix formalism is a unified quantum framework to
describe space-like and time-like separated scenarios.

0. Oreshkov, F. Costa, C.B., Nature Communication 3: 1092 (2012).



Causally separable processes

Most general processes compatible with definite causal structure
(convex mixtures of ordered processes):

4 ) 4 )

AR 1 -] )"

o Aﬁ _/ o Bﬁ _/
Channel from Ato B Channel from B to A

W = AW4=5 (1 - Hwh=4

0. Oreshkov, F. Costa, C.B., Nature Communication 3: 1092 (2012)



Causally non-separable processes

Theorem: The quantum switch is a causally non-separable process, i.e.
W £ AWASB2C 4 (1 — W H=43¢
Example: The quantum switch
W) = 10)™ ) 41 1)) 4271 1)) P20 4 |1y ) P 1)) P24 1)) 42
Identity channel: |1)) = Z 1) 7)
J

C
P
A

1
¥) ‘ V) !

G. Chiribella, G. M. D'Ariano, P. Perinotti, and B. Valiron, Phys. Rev. A 88, 022318 (2013)
M. Araujo, C. Branciard, F. Costa, A. Feix, C. Giarmatzi and C. B., New J. Phys. 17, 102001 (2015)
O. Oreshkov and C. Giarmatzi, New J. Phys. 18, 093020 (2016)
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Creating causally non-separable processes



Gravitational time-dilation

Initially synchronized clocks will eventually
show different times when placed at
different gravitational potentials.

Clock closer to a massive body ticks slower
than the clock further away from the mass.

Vb N



Gravitational time-dilation

d(x
Stationary metric, weak-field approximation: goo ~ —(1 + 2 C(2 ))
d(x).
Qryr = (1—|—2 6(2)) 1
o
|Aa: ATr, 1 _ goo(H) _
ATH g()o(L)
AN
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GR: Dynamical causal structure

The events A and B are space-like
separated.



GR: Dynamical causal structure

A .A 8 Proper times at A and B
? goo(rB)

@“ :
Coordinate time of photon propagation

TB) 9
@ @ Q between A and B

TA / grr<r,>
Event at A Event at B / dr' i | — /
cJ, goo(r")
measured by A measured by B B

1
7LZ\/QOO( A)T*Jr‘Tc\/m
|

QOO(T B)
\ ]
T Photon’s propagation
Event at B time measured by A

measured by A



GR: Dynamical causal structure

Channel from B to A:
UaUp|¥)

Mass configuration K5~ 4



GR: Dynamical causal structure

KA<B KB<A

B A

:tb:?—xz

» (Causal structure depends on the stress-energy tensor of the matter
degrees of freedom in the causal past of the events

= The order between the events is swapped in all reference frames



Quantum controlled causal order
(gravitational quantum switch)

Assumptions:

1) Macroscopically distinguishable states of physical systems can be
assigned orthogonal quantum states

2) Gravitational time dilation in a semiclassical limit reduces to that
predicted by general relativity

3) The quantum superposition principle holds regardless of the mass
of the superposed systems

Due to 1) one can assign quantum states |Ka<p), |Kp<a4) to the two
mass configurations, s.t. (Kp<a|Ka<p) =0.

Each of the states is ,,semiclassical®. Following 2) preparation of the
states produce different causal orders.

1
Due to 3) the state —
) 7

([Ka<B) + |KB<4)) is possible.



Quantum controlled causal order
(gravitational quantum switch)

W) = [Kasp) ) 1)) 425 1)) P20 1 K )™ |4) P 1)) P24 1)) 420

M. Zych, F. Costa, |. Pikovski and C.B., arXiv:1708.00248



The view of a distant observer

For a distant observer the system enters each
lab in a “superposition of two coordinate times”.

coordinate time

For a local observer the system enters each lab
at a well-defined proper time.

T = \/—goo(KA_<B)tO = \/_QOO(KB-<A)t1

space

Time foliation with respect to the coordinate
time (local time of a distant observer)



The view of a local observer

Observer-dependent localisation of event:
The gravitational quantum switch

A‘s reference frame:

A event is local, B's event is ,spread”
over A's past and future

B‘s reference frame:

B event is local, A's event is ,spread”
over B's past and future

((jg(t, ’:)

P. Allard Guérin, C.B., New J. Phys. 20, 103031 (2018)



The view of a local observer

Observer-dependent localisation of event:
The quantum switch

Mass position

o3 O
AN
woll = |
|

Communicated system

P. Allard Guérin, C.B., New J. Phys. 20, 103031 (2018)



Summary

= (Global causal order need not be a necessary element of quantum
theory.

= There exist “causally non-separable processes” (the quantum
switch).

Linear advantage in computation and exponential
reduction of communication complexity using the resource

* The quantum switch can be realized by spatial superposition of a
large mass. Relation to quantum gravity theories? Effects at the
Planck’s scale?

There are processes that display a strong violation of
causality (violate “causal inequalities”), but we do not know whether
they can be realized in nature.
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Causal Inequalities



One-directional signalling

Device-independent notion of causality

W " . ” H
b «— x, y: 'free variables” = measurement settings,
y —>| °°° statistically independent of “the rest of the
[\ experiment”
/ a, b: measurement outcomes
\ / A<B b _ A<B b
a «— > =P (a,bla,y) = p*=P (blz,y)
x —>| @00 a
= > p*=P(a, bz, y) = p*=P(alz)
One-directional signalling b

“from the past to the future”



Causal inequalities

Causal correlations: either A signals to B or B signals to A, or no-signalling
or a convex combination of these situations

p°**(a, blx,y) = Ap?=F(a,blz,y) + (1 — \)p"=*(a,b|z, y)

\ /
b «— Causal correlations satisfy causal inequalities,
y —> | ©°0 which are facets of the causal polytope.
o pla=yb=1z) < 1 "Guess my neighbour’s
2 input game”
The switch satisfies causal inequalities.
a4 «— There are process matrices that violate causal
X 000 inequalities, but we do not know if these
7\ “processes” can be realised in laboratory.

C. Branciard, M. Aradjo, F. Costa, A. Feix, and C. Brukner, New J. Phys. 18, 013008 (2016).
A. A. Abbott, C. Giarmatzi, F. Costa, C. Branciard, Phys. Rev. A 94, 032131 (2016)



Transformations of the processes

Can we obtain a causally nonseparable W’ from a causally separable
process W?

Higher-order maps: W' = A(W)

All continuous and reversible
process matrix transformations
are local unitary operations in

each party’s input and output
Hilbert space.

Continuous and reversible transformations always preserve
the causal order
P. Perinotti. (2016) Preprint at https://arxiv.org/abs/1612.05099

G. Chiribella, G. M. D"Ariano, and P. Perinotti. PRA (2009)
E. Castro-Ruiz, F. Giacomini, C. B., Phys. Rev. X 8, 011047 (2018)



Violation of causal inequalities

There are process matrices that violate causal inequalities, but we do not
know if these “processes” can be realised in laboratory.

ax
maj(A27B27C2) =0 Ti‘l' : ma’j(A27B2702) =1
i: , B :g £ B
g R s

$1
The classical process matrix that enables violation of a three-partite causal
inequality. “Loops” with no “grandfather paradoxes”.

Causal inequality: ;
1

Pooe = §(P(a =z,c=y,b=zmaj(z,y,z) =0) < 1 causal W
+P(a=179,b=Zz,c=ZTmaj(z,y,z) =1) =1 the "non-causal” W

A. Baumeler, S. Wolf, New J. Phys. 18, 013036 (2016)



'S

fd A
1
o
e
<

— UB — UBXUE
Tucl-e & {UcXUt b

P. Allard Guérin, C.B., Observer-dependent locality of quantum events, arXiv:1805.12429



“Correlation does not imply causation”

Need for interventions (“free variables”)
independent of the two:

a: The sun is rising or not x: Switching the sun on & off
b: The rooster is crowing or not y: Making a chicken soup or not
p(a,b) p(a,blz,y)

Zp(a7 b‘ZU, y) — p(b|£lj, y)
3" pla. blz. ) = plalz)
b

Conclusion: The sun will rise even if we cook the soup, but the rooster will
not crow, if we switch off the sun.




The Choi-Jamilolkowski isomorphism

For Kraus operators:

K= kyli)(jl — |K)= Z’%l] ZK' @ i)
ij

For maps: (:ﬁ)
\ /

M:LHY) = L(H?) & M e L(H')®L(H?)
— (M1)(|T)(®T]) Z| Vi1t @ M([i)(])? {g\

Inverse isomorphism: M (p) = Tr1[M(p! ® 1)]



