Accelerated observers and Planck-scale kinematics

Michele Arzano

Università di Napoli Federico II

Quantum Spacetime '19, Bratislava, February 12, 2019

Michele Arzano — Accelerated observers and Planck-scale kinematics

$$S_{BH} = \frac{A}{4L_p^2}$$

$$S_{BH} = rac{A}{4L_p^2}$$

 't Hooft showed that S_{BH} can be viewed as thermodynamic entropy of a quantum field near a Schwarzschild horizon (Nucl. Phys. B 256, 727 (1985))

$$S_{BH} = rac{A}{4L_p^2}$$

- 't Hooft showed that S_{BH} can be viewed as thermodynamic entropy of a quantum field near a Schwarzschild horizon (Nucl. Phys. B 256, 727 (1985))
- In local QFT a UV regulator is needed: vanishing field at small distance from horizon, a "brick wall"

$$S_{BH} = rac{A}{4L_p^2}$$

- 't Hooft showed that S_{BH} can be viewed as thermodynamic entropy of a quantum field near a Schwarzschild horizon (Nucl. Phys. B 256, 727 (1985))
- In local QFT a UV regulator is needed: vanishing field at small distance from horizon, a "brick wall"
- Do not need a black hole for such area law!

$$S_{BH} = rac{A}{4L_p^2}$$

- 't Hooft showed that S_{BH} can be viewed as thermodynamic entropy of a quantum field near a Schwarzschild horizon (Nucl. Phys. B 256, 727 (1985))
- In local QFT a UV regulator is needed: vanishing field at small distance from horizon, a "brick wall"
- Do not need a black hole for such area law!
- Susskind and Uglum (Phys. Rev. D 50, 2700 (1994)) derived a similar result for Rindler space (accelerated observers) by considering a BH in the limit of infinite radius

$$S_{BH} = rac{A}{4L_p^2}$$

- 't Hooft showed that S_{BH} can be viewed as thermodynamic entropy of a quantum field near a Schwarzschild horizon (Nucl. Phys. B 256, 727 (1985))
- In local QFT a UV regulator is needed: vanishing field at small distance from horizon, a "brick wall"
- Do not need a black hole for such area law!
- Susskind and Uglum (Phys. Rev. D 50, 2700 (1994)) derived a similar result for Rindler space (accelerated observers) by considering a BH in the limit of infinite radius

∜

Upon introduction of a "brick wall" regulator obtain entropy density $\sim 1/L_P^2$

Jacobson (Phys. Rev. Lett. 75, 1260 (1995)): Einstein equations as an equation of state

Jacobson (Phys. Rev. Lett. 75, 1260 (1995)): Einstein equations as an equation of state

• Demand an entropy balance relation $\delta S = \delta E / T$ for all local Rindler horizons

Jacobson (Phys. Rev. Lett. 75, 1260 (1995)): Einstein equations as an equation of state

• Demand an entropy balance relation $\delta S = \delta E / T$ for all local Rindler horizons

where

• δE = energy flux across the horizon and $T = T_U = a/2\pi$ Unruh temperature related to the local acceleration a

Jacobson (Phys. Rev. Lett. 75, 1260 (1995)): Einstein equations as an equation of state

• Demand an entropy balance relation $\delta S = \delta E/T$ for all local Rindler horizons

where

- δE = energy flux across the horizon and $T = T_U = a/2\pi$ Unruh temperature related to the local acceleration a
- \Rightarrow <u>Assume</u> a finite entropy per area $\sim 1/L_P^2$ associated with local Rindler horizon

Jacobson (Phys. Rev. Lett. 75, 1260 (1995)): Einstein equations as an equation of state

• Demand an entropy balance relation $\delta S = \delta E / T$ for all local Rindler horizons

where

- δE = energy flux across the horizon and $T = T_U = a/2\pi$ Unruh temperature related to the local acceleration a
- \Rightarrow <u>Assume</u> a **finite entropy per area** $\sim 1/L_P^2$ associated with local Rindler horizon

The common view is that **quantum properties of spacetime** can lead to a **finite horizon entropy density** in the same way quantization of the electromagnetic field leads to a finite **black-body entropy**

Goals of this talk:

Goals of this talk:

• Model Planck-scale Rindler kinematics using symmetry deformation (Hopf algebra) incorporating a UV energy scale $1/\ell$

Goals of this talk:

- Model Planck-scale Rindler kinematics using symmetry deformation (Hopf algebra) incorporating a UV energy scale $1/\ell$
- Study density of states of deformed field and explore the possibility of a finite horizon entropy density with $\ell \sim L_P$

Goals of this talk:

• Model Planck-scale Rindler kinematics using symmetry deformation (Hopf algebra) incorporating a UV energy scale $1/\ell$

• Study density of states of deformed field and explore the possibility of a finite horizon entropy density with $\ell \sim L_P$

Work in collaboration with Master's student M. Laudonio (Phys. Rev. D 97, no. 8, 085004 (2018))

Four-velocity of observer with acceleration $\boldsymbol{\alpha}$

 $U^{\mu} = (\cosh \alpha \tau, \sinh \alpha \tau, 0, 0)$

Lorentz boost by $\eta = \alpha \tau$ of four-velocity of static Minkowski observer $U^{\mu} = (1, 0, 0, 0)$

Four-velocity of observer with acceleration $\boldsymbol{\alpha}$

 $U^{\mu} = (\cosh \alpha \tau, \sinh \alpha \tau, 0, 0)$

Lorentz boost by $\eta = \alpha \tau$ of four-velocity of static Minkowski observer $U^{\mu} = (1, 0, 0, 0)$

Accelerated worldline = Lorentz orbit of the vector $(0, 1/\alpha)$

$$-t(au)^2+x(au)^2=rac{1}{lpha^2}$$

Four-velocity of observer with acceleration $\boldsymbol{\alpha}$

 $U^{\mu} = (\cosh \alpha \tau, \sinh \alpha \tau, 0, 0)$

Lorentz boost by $\eta = \alpha \tau$ of four-velocity of static Minkowski observer $U^{\mu} = (1, 0, 0, 0)$

Accelerated worldline = Lorentz orbit of the vector $(0, 1/\alpha)$

$$-t(\tau)^2 + x(\tau)^2 = \frac{1}{\alpha^2}$$

How do we describe observers with different accelerations?

Four-velocity of observer with acceleration $\boldsymbol{\alpha}$

 $U^{\mu} = (\cosh \alpha \tau, \sinh \alpha \tau, 0, 0)$

Lorentz boost by $\eta = \alpha \tau$ of four-velocity of static Minkowski observer $U^{\mu} = (1, 0, 0, 0)$

Accelerated worldline = Lorentz orbit of the vector $(0, 1/\alpha)$

$$-t(au)^2+x(au)^2=rac{1}{lpha^2}$$

How do we describe observers with different accelerations?

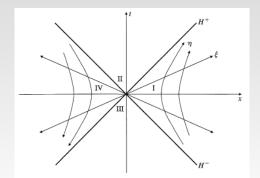
Using a **dilation** generated by $D = -i x^{\mu} \partial_{\mu}$: a finite transformation of parameter δ

$$(t,x)
ightarrow (t',x') = e^{\delta}(t,x) \implies \boxed{lpha
ightarrow lpha' = e^{-\delta} lpha}$$

Rindler space

Define spatial Rindler coordinate ξ in terms of the dilation parameter $\delta = a\xi$ (with 1/a = [lenght])

$$\begin{cases} t = \frac{1}{a} e^{a\xi} \sinh a\eta \\ x = \frac{1}{a} e^{a\xi} \cosh a\eta \end{cases}$$



Boosts and dilations in Minkowski space can be used to describe Rindler space

Boosts and dilations in Minkowski space can be used to describe Rindler space

Weyl-Poincaré algebra in 1+1 dimensions

$$\begin{split} & \left[P_t, P_x \right] = 0, \quad \left[D, N \right] = 0 \\ & \left[N, P_t \right] = i P_x, \quad \left[N, P_x \right] = i P_t \\ & \left[D, P_t \right] = i P_t, \quad \left[D, P_x \right] = i P_x \end{split}$$

Boosts and dilations in Minkowski space can be used to describe Rindler space

Weyl-Poincaré algebra in 1+1 dimensions

$$\begin{bmatrix} P_t, P_x \end{bmatrix} = 0, \quad \begin{bmatrix} D, N \end{bmatrix} = 0 \\ \begin{bmatrix} N, P_t \end{bmatrix} = iP_x, \quad \begin{bmatrix} N, P_x \end{bmatrix} = iP_t \\ \begin{bmatrix} D, P_t \end{bmatrix} = iP_t, \quad \begin{bmatrix} D, P_x \end{bmatrix} = iP_x$$

This algebra contains *two abelian subalgebras* spanned by $\{P_t, P_x\}$ and $\{D, N\}$

Boosts and dilations in Minkowski space can be used to describe Rindler space

Weyl-Poincaré algebra in 1+1 dimensions

$$\begin{split} & \left[P_t, P_x \right] = 0, \quad \left[D, N \right] = 0 \\ & \left[N, P_t \right] = i P_x, \quad \left[N, P_x \right] = i P_t \\ & \left[D, P_t \right] = i P_t, \quad \left[D, P_x \right] = i P_x \end{split}$$

This algebra contains two abelian subalgebras spanned by $\{P_t, P_x\}$ and $\{D, N\}$

Besides usual reps in terms of $P_{t,x} = i\partial_{t,x}$ we have an **alternative reps** in terms of Rindler coordinates ξ, η

$$P_{\xi} = aD = i\partial_{\xi}, \quad P_{\eta} = aN = i\partial_{\eta}$$

Boosts and dilations in Minkowski space can be used to describe Rindler space

Weyl-Poincaré algebra in 1+1 dimensions

$$\begin{split} & \left[P_t, P_x \right] = 0, \quad \left[D, N \right] = 0 \\ & \left[N, P_t \right] = i P_x, \quad \left[N, P_x \right] = i P_t \\ & \left[D, P_t \right] = i P_t, \quad \left[D, P_x \right] = i P_x \end{split}$$

This algebra contains two abelian subalgebras spanned by $\{P_t, P_x\}$ and $\{D, N\}$

Besides usual reps in terms of $P_{t,x} = i\partial_{t,x}$ we have an **alternative reps** in terms of Rindler coordinates ξ, η

$$P_{\xi} = aD = i\partial_{\xi}, \quad P_{\eta} = aN = i\partial_{\eta}$$

Note the role of acceleration scale a in order to get the right dimensions for P_{ξ} and P_{η}

Aside: the Unruh effect without space-time

Aside: the Unruh effect without space-time

The simplest non-abelian Lie algebra

[D, P] = iP

relationship between **boundary** and **thermal effects** from representation theory (work with Kowalski-Glikman: Phys. Lett. B **788**, 82 (2019), [arXiv:1804.10550 [hep-th]])

Rindler coordinates and reps of the Weyl-Poincaré algebra

Representation of the Weyl-Poincaré generators in terms of $(\partial_{\xi}, \partial_{\eta})$

$$P_{\xi} = i\partial_{\xi}$$

$$P_{\eta} = i\partial_{\eta}$$

$$P_{t} = ie^{-a\xi}(\cosh a\eta \,\partial_{\eta} - \sinh a\eta \,\partial_{\xi})$$

$$P_{x} = ie^{-a\xi}(-\sinh a\eta \,\partial_{\eta} + \cosh a\eta \,\partial_{\xi})$$

Rindler coordinates and reps of the Weyl-Poincaré algebra

Representation of the Weyl-Poincaré generators in terms of $(\partial_{\xi}, \partial_{\eta})$

$$P_{\xi} = i\partial_{\xi}$$

$$P_{\eta} = i\partial_{\eta}$$

$$P_{t} = ie^{-a\xi}(\cosh a\eta \,\partial_{\eta} - \sinh a\eta \,\partial_{\xi})$$

$$P_{x} = ie^{-a\xi}(-\sinh a\eta \,\partial_{\eta} + \cosh a\eta \,\partial_{\xi})$$

Inverting the last two relation we have

$$P_{\eta} = e^{a\xi} (\cosh a\eta P_t + \sinh a\eta P_x)$$
$$P_{\xi} = e^{a\xi} (\sinh a\eta P_t + \cosh a\eta P_x)$$

Rindler translation generators are obtained from P_t and P_x in terms of a **boost** by $a\eta$ and a **dilation** by $a\xi$

Rindler coordinates and reps of the Weyl-Poincaré algebra

Representation of the Weyl-Poincaré generators in terms of $(\partial_{\xi}, \partial_{\eta})$

$$P_{\xi} = i\partial_{\xi}$$

$$P_{\eta} = i\partial_{\eta}$$

$$P_{t} = ie^{-a\xi}(\cosh a\eta \,\partial_{\eta} - \sinh a\eta \,\partial_{\xi})$$

$$P_{x} = ie^{-a\xi}(-\sinh a\eta \,\partial_{\eta} + \cosh a\eta \,\partial_{\xi})$$

Inverting the last two relation we have

$$P_{\eta} = e^{a\xi} (\cosh a\eta P_t + \sinh a\eta P_x)$$
$$P_{\xi} = e^{a\xi} (\sinh a\eta P_t + \cosh a\eta P_x)$$

Rindler translation generators are obtained from P_t and P_x in terms of a **boost** by $a\eta$ and a **dilation** by $a\xi$

Rindler mass shell obtained from mass Casimir

$$\mathcal{C} = P_0^2 - P_x^2 = e^{-2a\xi} (P_\eta^2 - P_\xi^2),$$

Doppler shift and Rindler horizon

Four-velocity of Rindler observer with acceleration a

 $U^{\mu} = (\cosh a\eta, \sinh a\eta)$

Doppler shift and Rindler horizon

Four-velocity of Rindler observer with acceleration a

 $U^{\mu} = (\cosh a\eta, \sinh a\eta)$

 U^{μ} is proportional to **Rindler time**-translation generator $P^{\mu}_{\eta} = e^{a\xi}(\cosh a\eta, \sinh a\eta)$

$$U^{\mu}=e^{-a\xi}P^{\mu}_{\eta}$$

Doppler shift and Rindler horizon

Four-velocity of Rindler observer with acceleration a

 $U^{\mu} = (\cosh a\eta, \sinh a\eta)$

 U^{μ} is proportional to **Rindler time**-translation generator $P^{\mu}_{\eta} = e^{a\xi}(\cosh a\eta, \sinh a\eta)$

$$U^{\mu}=e^{-a\xi}P^{\mu}_{\eta}$$

• Conserved energy of a photon w.r.t. the Rindler time is $\omega = k_{\mu}P_{\eta}^{\mu}$

Doppler shift and Rindler horizon

Four-velocity of Rindler observer with acceleration a

 $U^{\mu} = (\cosh a\eta, \sinh a\eta)$

 U^{μ} is proportional to **Rindler time**-translation generator $P^{\mu}_{\eta} = e^{a\xi}(\cosh a\eta, \sinh a\eta)$

$$U^{\mu}=e^{-a\xi}P^{\mu}_{\eta}$$

- Conserved energy of a photon w.r.t. the Rindler time is $\omega = k_{\mu} P_{\eta}^{\mu}$
- Energy measured by observer with four-velocity U^{μ}

$$\omega_{\xi} = k_{\mu} U^{\mu} = e^{-a\xi} \omega$$

Doppler shift and Rindler horizon

Four-velocity of Rindler observer with acceleration a

 $U^{\mu} = (\cosh a\eta, \sinh a\eta)$

 U^{μ} is proportional to **Rindler time**-translation generator $P^{\mu}_{\eta} = e^{a\xi}(\cosh a\eta, \sinh a\eta)$

$$U^{\mu}=e^{-a\xi}P^{\mu}_{\eta}$$

- Conserved energy of a photon w.r.t. the Rindler time is $\omega = k_{\mu}P_{\eta}^{\mu}$
- Energy measured by observer with four-velocity U^{μ}

$$\omega_{\xi} = k_{\mu} U^{\mu} = e^{-a\xi} \omega$$

• At $\xi = -\infty$ i.e. on the light cone x = |t| the photon's frequency will appear **infinitely blueshifted** (in analogy with Schwarzschild horizon)

The **Rindler horizon** is described by an *infinite contraction* generated by D

Mode counting: Minkowski vs. Rindler

Minkowski space: number of modes of a massless scalar field in a 3D box of size L

Mode counting: Minkowski vs. Rindler

Minkowski space: number of modes of a massless scalar field in a 3D box of size L

$$n(E) = \frac{L^3 E^3}{6\pi^2} = \frac{L^3 k^3}{6\pi^2}$$

Mode counting: Minkowski vs. Rindler

Minkowski space: number of modes of a massless scalar field in a 3D box of size L

$$n(E) = \frac{L^3 E^3}{6\pi^2} = \frac{L^3 k^3}{6\pi^2}$$

Rindler space: the wavenumber varies in space for Rindler observers $k_{\xi} = e^{-a\xi}k$

Counting states

State counting can be obtained from phase space of a massless particle

invariant momentum-space volume

 $\times \qquad d^4 k \, \delta(\mathcal{C}) \, \theta(k_0)$

 $dn \sim 2k_0 dt dx^3 \delta(t)$

invariant config. space volume

Counting states

State counting can be obtained from phase space of a massless particle

$$dn \sim (2k_0 dt dx^3 \delta(t)) \times d^4 k \, \delta(C) \, \theta(k_0)$$

invariant	contig	snace	volume

In Minkwoski space, integrating over a spatial volume $V = L^3$

$$n_M(E) = \frac{V}{(2\pi)^3} \int_E d^4 k \, 2k_0 \, \delta(k^2) \, \theta(k_0) = \frac{L^3 E^3}{6\pi^2}$$

Counting states

State counting can be obtained from phase space of a massless particle

$$dn \sim \underbrace{2k_0 dt dx^3 \delta(t)}_{dx} \times \underbrace{d^4 k \, \delta(\mathcal{C}) \, \theta(k_0)}_{dx}$$

invariant	config.	space	vol	ume

In Minkwoski space, integrating over a spatial volume $V = L^3$

$$n_M(E) = \frac{V}{(2\pi)^3} \int_E d^4 k \, 2k_0 \, \delta(k^2) \, \theta(k_0) = \frac{L^3 E^3}{6\pi^2}$$

For a Rindler field using Rindler dispersion relation $E^2 = k_{\xi}^2 + e^{2a\xi}k_{\perp}^2$

$$n_R(E) = \frac{V_{\perp}}{(2\pi)^3} \int_{\mathbb{R}} d\xi \int dk_{\eta} dk_{\xi} dk_{\perp}^2 2k_{\eta} e^{-2i\xi} \,\delta(\mathcal{C})\theta(k_{\eta}) = \frac{V_{\perp}}{(2\pi)^3} \frac{4\pi}{3} E^3 \int_{-\infty}^{\infty} d\xi \, e^{-2i\xi}$$

Introduce a "brick wall" at ξ_{min} (and put the field in a IR box)

$$n_R(E) = \frac{E^3 L^2}{6\pi^2} \int_{\xi_{min}}^{\log(aR)/a} d\xi \, e^{-2a\xi} = \frac{E^3 L^2}{12\pi^2} \frac{1}{a} \left[e^{-2a\xi_{min}} - \frac{1}{(aR)^2} \right] \, .$$

Introduce a "brick wall" at ξ_{min} (and put the field in a IR box)

$$n_R(E) = \frac{E^3 L^2}{6\pi^2} \int_{\xi_{min}}^{\log(aR)/a} d\xi \, e^{-2a\xi} = \frac{E^3 L^2}{12\pi^2} \frac{1}{a} \left[e^{-2a\xi_{min}} - \frac{1}{(aR)^2} \right] \, .$$

From log $Q = \beta \int_0^\infty dE \frac{n(E)}{e^{\beta E} - 1}$ calculate entropy $S = -\beta^2 \frac{\partial}{\partial \beta} \frac{\log Q}{\beta}$, which scales as L^2 !

$$S = \frac{\pi^2}{45} \frac{L^2}{a\beta^3} \left[e^{-2a\xi_{min}} - \frac{1}{(aR)^2} \right] = S_{wall} + \mathsf{IR} \text{ box contribution}$$

Introduce a "brick wall" at ξ_{min} (and put the field in a IR box)

$$n_R(E) = \frac{E^3 L^2}{6\pi^2} \int_{\xi_{min}}^{\log(aR)/a} d\xi \, e^{-2a\xi} = \frac{E^3 L^2}{12\pi^2} \frac{1}{a} \left[e^{-2a\xi_{min}} - \frac{1}{(aR)^2} \right] \, .$$

From log $Q = \beta \int_0^\infty dE \frac{n(E)}{e^{\beta E} - 1}$ calculate entropy $S = -\beta^2 \frac{\partial}{\partial \beta} \frac{\log Q}{\beta}$, which scales as L^2 !

$$S = \frac{\pi^2}{45} \frac{L^2}{a\beta^3} \left[e^{-2a\xi_{min}} - \frac{1}{(aR)^2} \right] = S_{wall} + \text{IR box contribution},$$

For $\beta \sim 1/T_U \sim 2\pi/a$, ξ_{min} can be fixed \Rightarrow Bekenstein-Hawking entropy density $\sigma_{wall} = S_{wall}/L^2 = \frac{1}{4L_\rho^2}$

The Weyl-Poincaré algebra pw(3, 1) in 3 + 1 dimensions $[P_{\mu}, P_{\nu}] = 0$, $[P_{\mu}, M_{\rho\nu}] = i(\eta_{\mu\rho}P_{\nu} - \eta_{\mu\nu}P_{\rho})$ $[M_{\mu\nu}, M_{\rho\sigma}] = i(\eta_{\mu\sigma}M_{\nu\rho} - \eta_{\mu\sigma}M_{\nu\rho} + \eta_{\nu\rho}M_{\mu\rho} - \eta_{\nu\rho}M_{\mu\sigma})$ $[D, P_{\mu}] = iP_{\mu}$, $[D, M_{\mu\nu}] = 0$

The Weyl-Poincaré algebra pw(3, 1) in 3 + 1 dimensions $[P_{\mu}, P_{\nu}] = 0$, $[P_{\mu}, M_{\rho\nu}] = i(\eta_{\mu\rho}P_{\nu} - \eta_{\mu\nu}P_{\rho})$ $[M_{\mu\nu}, M_{\rho\sigma}] = i(\eta_{\mu\sigma}M_{\nu\rho} - \eta_{\mu\sigma}M_{\nu\rho} + \eta_{\nu\rho}M_{\mu\rho} - \eta_{\nu\rho}M_{\mu\sigma})$ $[D, P_{\mu}] = iP_{\mu}$, $[D, M_{\mu\nu}] = 0$

Consider deformation by Jordanian twist (Aschieri, Borowiec and Pachol, JHEP 1710, 152 (2017))

$$W^{\mathcal{F}}=ar{f^{lpha}}(W)ar{f_{lpha}}\,,\ \ W\in\mathfrak{pw}(3,1)$$

where $\mathcal{F} = f^{\alpha} \otimes f_{\alpha} = exp(-iD \otimes \sigma), \ \sigma = \log(1 + \ell P_0) \ \text{and} \ \mathcal{F}^{-1} = \bar{f^{\alpha}} \otimes \bar{f_{\alpha}}$

The Weyl-Poincaré algebra pw(3, 1) in 3 + 1 dimensions $[P_{\mu}, P_{\nu}] = 0$, $[P_{\mu}, M_{\rho\nu}] = i(\eta_{\mu\rho}P_{\nu} - \eta_{\mu\nu}P_{\rho})$ $[M_{\mu\nu}, M_{\rho\sigma}] = i(\eta_{\mu\sigma}M_{\nu\rho} - \eta_{\mu\sigma}M_{\nu\rho} + \eta_{\nu\rho}M_{\mu\rho} - \eta_{\nu\rho}M_{\mu\sigma})$ $[D, P_{\mu}] = iP_{\mu}$, $[D, M_{\mu\nu}] = 0$

Consider deformation by Jordanian twist (Aschieri, Borowiec and Pachol, JHEP 1710, 152 (2017))

$$W^{\mathcal{F}}=ar{f^{lpha}}(W)ar{f_{lpha}}\,,\ \ W\in\mathfrak{pw}(3,1)$$

where $\mathcal{F} = f^{\alpha} \otimes f_{\alpha} = exp(-iD \otimes \sigma)$, $\sigma = \log(1 + \ell P_0)$ and $\mathcal{F}^{-1} = \bar{f^{\alpha}} \otimes \bar{f_{\alpha}}$

 ℓ deformation parameter $\sim L_p$

The Weyl-Poincaré algebra pw(3, 1) in 3 + 1 dimensions $[P_{\mu}, P_{\nu}] = 0$, $[P_{\mu}, M_{\rho\nu}] = i(\eta_{\mu\rho}P_{\nu} - \eta_{\mu\nu}P_{\rho})$ $[M_{\mu\nu}, M_{\rho\sigma}] = i(\eta_{\mu\sigma}M_{\nu\rho} - \eta_{\mu\sigma}M_{\nu\rho} + \eta_{\nu\rho}M_{\mu\rho} - \eta_{\nu\rho}M_{\mu\sigma})$ $[D, P_{\mu}] = iP_{\mu}$, $[D, M_{\mu\nu}] = 0$

Consider deformation by Jordanian twist (Aschieri, Borowiec and Pachol, JHEP 1710, 152 (2017))

$$W^{\mathcal{F}}=ar{f^{lpha}}(W)ar{f_{lpha}}\,,\ \ W\in\mathfrak{pw}(3,1)$$

where $\mathcal{F} = f^{\alpha} \otimes f_{\alpha} = exp(-iD \otimes \sigma) \,, \ \sigma = \log\left(1 + \ell P_0\right)$ and $\mathcal{F}^{-1} = \bar{f^{\alpha}} \otimes \bar{f_{\alpha}}$

ℓ deformation parameter $\sim L_p$

The resulting twisted generators

$$P^{\mathcal{F}}_{\mu} = rac{P_{\mu}}{1+\ell P_0}\,,\quad M^{\mathcal{F}}_{\mu
u} = M_{\mu
u}\,,\quad D^{\mathcal{F}} = D_{\mu}$$

very similar to the redefinition of translation generators used by Magueijo and Smolin in their early DSR model (Phys. Rev. Lett. 88, 190403 (2002))

The twisted Weyl-Poincaré algebra (continued)

In terms of the twisted commutator

$$[W^{\mathcal{F}}, V^{\mathcal{F}}]_{\mathcal{F}} = W^{\mathcal{F}}V^{\mathcal{F}} - (\bar{R}^{\alpha}(V))^{\mathcal{F}}(\bar{R}_{\alpha}(W))^{\mathcal{F}}.$$

the twisted generators obey an undeformed Weyl-Poincaré algebra.

The twisted Weyl-Poincaré algebra (continued)

In terms of the *twisted commutator* $[W^{\mathcal{F}}, V^{\mathcal{F}}]_{\mathcal{F}} = W^{\mathcal{F}}V^{\mathcal{F}} - (\bar{R}^{\alpha}(V))^{\mathcal{F}}(\bar{R}_{\alpha}(W))^{\mathcal{F}}.$

the twisted generators obey an undeformed Weyl-Poincaré algebra.

This translates in the following deformed commutators

$$\begin{split} [M_{\mu\nu}^{\mathcal{F}}, P_{\rho}^{\mathcal{F}}] &= i \left(\eta_{\rho\nu} P_{\mu}^{\mathcal{F}} - \eta_{\rho\mu} P_{\nu}^{\mathcal{F}} \right) - i \ell \delta_{\mu 0} \delta_{\nu i} P_{\rho}^{\mathcal{F}} P_{i}^{\mathcal{F}} \\ [D^{\mathcal{F}}, P_{\mu}^{\mathcal{F}}] &= i P_{\mu}^{\mathcal{F}} - i \ell P_{\mu}^{\mathcal{F}} P_{0}^{\mathcal{F}} \end{split}$$

while all other commutators remain undeformed.

The twisted Weyl-Poincaré algebra (continued)

In terms of the *twisted commutator*

$$[W^{\mathcal{F}}, V^{\mathcal{F}}]_{\mathcal{F}} = W^{\mathcal{F}}V^{\mathcal{F}} - (\bar{R}^{\alpha}(V))^{\mathcal{F}}(\bar{R}_{\alpha}(W))^{\mathcal{F}}.$$

the twisted generators obey an undeformed Weyl-Poincaré algebra.

This translates in the following deformed commutators

$$[M_{\mu\nu}^{\mathcal{F}}, P_{\rho}^{\mathcal{F}}] = i \left(\eta_{\rho\nu} P_{\mu}^{\mathcal{F}} - \eta_{\rho\mu} P_{\nu}^{\mathcal{F}} \right) - i \ell \delta_{\mu 0} \delta_{\nu i} P_{\rho}^{\mathcal{F}} P_{i}^{\mathcal{F}}$$
$$[D^{\mathcal{F}}, P_{\mu}^{\mathcal{F}}] = i P_{\mu}^{\mathcal{F}} - i \ell P_{\mu}^{\mathcal{F}} P_{0}^{\mathcal{F}}$$

while all other commutators remain undeformed.

The mass Casimir $C = P_{\mu}P^{\mu}$ in terms of the twisted translation generators $P_{\mu}^{\mathcal{F}}$ becomes

$$\mathcal{L}^{\mathcal{F}} = rac{\left(\mathcal{P}_{\mu} \mathcal{P}^{\mu}
ight)^{\mathcal{F}}}{(1 - \ell \mathcal{P}_{0}^{\mathcal{F}})^{2}}.$$

At the algebraic level this is all we need to go and play the "DSR game"

DSR finite boosts

Twisted DSR finite boosts in the 1-direction

From the deformed algebra we have

$$\frac{d\omega}{d\phi} = -i[N_1, \omega] = k_1(1 - \ell\omega) \qquad \qquad \omega(\phi) = \frac{\omega^0 \cosh \phi + k_1^0 \sinh \phi}{A}$$
$$\frac{dk_1}{d\phi} = -i[N_1, k_1] = (\omega - \ell k_1 k^1) \qquad \Longrightarrow \qquad k_1(\phi) = \frac{\omega^0 \sinh \phi + k_1^0 \cosh \phi}{A}$$
$$\frac{dk_i}{d\phi} = -i[N_1, k_i] = \ell k_1 k_i, \quad i = 2, 3 \qquad \qquad k_i(\phi) = \frac{k_i^0}{A}, \quad i = 2, 3$$

where
$$A = 1 - \ell \omega^0 + \ell \omega^0 \cosh \phi + \ell k_1^0 \sinh \phi$$

DSR finite boosts

Twisted DSR finite boosts in the 1-direction

From the deformed algebra we have

$$\frac{d\omega}{d\phi} = -i[N_1, \omega] = k_1(1 - \ell\omega) \qquad \qquad \omega(\phi) = \frac{\omega^0 \cosh \phi + k_1^0 \sinh \phi}{A}$$
$$\frac{dk_1}{d\phi} = -i[N_1, k_1] = (\omega - \ell k_1 k^1) \qquad \Longrightarrow \qquad k_1(\phi) = \frac{\omega^0 \sinh \phi + k_1^0 \cosh \phi}{A}$$
$$\frac{dk_i}{d\phi} = -i[N_1, k_i] = \ell k_1 k_i, \quad i = 2, 3 \qquad \qquad k_i(\phi) = \frac{k_i^0}{A}, \quad i = 2, 3$$

where
$$A = 1 - \ell \omega^0 + \ell \omega^0 \cosh \phi + \ell k_1^0 \sinh \phi$$

Boosts saturate at the Planck scale!

$$\lim_{\phi \to \infty} \omega(\phi) = \frac{1}{\ell} \ , \ \lim_{\phi \to \infty} k_1 = \frac{1}{\ell} \ , \ \lim_{\phi \to \infty} k_i = 0$$

Twisted dilations

The same procedure can be used to derive the twisted dilation transformation

For $\delta \to -\infty$ both energy and momentum vanish, as in the undeformed case

Twisted dilations

The same procedure can be used to derive the twisted dilation transformation

$$\begin{aligned} \frac{d\omega}{d\delta} &= -i[D,\omega] = \omega(1-\ell\omega) \\ \frac{dk_i}{d\delta} &= -i[D,k_i] = k_i(1-\ell\omega) \end{aligned} \implies \begin{aligned} \omega(\delta) &= \frac{\omega^0}{\omega^0\ell + (1-\omega^0\ell)e^{-\delta}} \\ k_i(\delta) &= \frac{k_i^0}{\omega^0\ell + (1-\omega^0\ell)e^{-\delta}} \end{aligned}$$

For $\delta \to -\infty$ both energy and momentum vanish, as in the undeformed case

For $\delta \rightarrow \infty$ dilation transformations saturate at the Planck scale!

$$\lim_{\delta o \infty} \omega(\delta) = rac{1}{\ell} \qquad \lim_{\delta o \infty} k_i(\delta) = rac{k_i^0}{\ell \omega^0}$$

Rindler translation generators associated to accelerated observers in the 1-direction

Rindler translation generators associated to accelerated observers in the 1-direction

Act on $P^{\mathcal{F}}_{\mu}$ with deformed boost in the 1-direction and a dilation in the (η,ξ) -plane

Rindler translation generators associated to accelerated observers in the 1-direction

Act on $P^{\mathcal{F}}_{\mu}$ with deformed boost in the 1-direction and a dilation in the (η, ξ) -plane

$$\begin{split} P_{\eta}^{\mathcal{F}} &= \frac{P_{0}^{\mathcal{F}}\cosh a\eta + P_{1}^{\mathcal{F}}\sinh a\eta}{\ell P_{0}^{\mathcal{F}}\cosh a\eta + \ell P_{1}^{\mathcal{F}}\sinh a\eta + (1 - P_{0}^{\mathcal{F}}\ell)e^{-a\xi}} \\ P_{\xi}^{\mathcal{F}} &= \frac{P_{0}^{\mathcal{F}}\sinh a\eta + P_{1}^{\mathcal{F}}\cosh a\eta}{\ell P_{0}^{\mathcal{F}}\cosh a\eta + \ell P_{1}^{\mathcal{F}}\sinh a\eta + (1 - P_{0}^{\mathcal{F}}\ell)e^{-a\xi}} \\ P_{i}^{\mathcal{F}} &= \frac{P_{i}^{\mathcal{F}}}{1 - \ell P_{0}^{\mathcal{F}} + \ell P_{0}^{\mathcal{F}}\cosh a\eta + \ell P_{1}^{\mathcal{F}}\sinh a\eta}, \ i = 2, 3. \end{split}$$

Rindler translation generators associated to accelerated observers in the 1-direction

Act on $P^{\mathcal{F}}_{\mu}$ with deformed boost in the 1-direction and a dilation in the (η, ξ) -plane

$$\begin{split} P_{\eta}^{\mathcal{F}} &= \frac{P_{0}^{\mathcal{F}}\cosh a\eta + P_{1}^{\mathcal{F}}\sinh a\eta}{\ell P_{0}^{\mathcal{F}}\cosh a\eta + \ell P_{1}^{\mathcal{F}}\sinh a\eta + (1 - P_{0}^{\mathcal{F}}\ell)e^{-a\xi}} \\ P_{\xi}^{\mathcal{F}} &= \frac{P_{0}^{\mathcal{F}}\sinh a\eta + P_{1}^{\mathcal{F}}\cosh a\eta}{\ell P_{0}^{\mathcal{F}}\cosh a\eta + \ell P_{1}^{\mathcal{F}}\sinh a\eta + (1 - P_{0}^{\mathcal{F}}\ell)e^{-a\xi}} \\ P_{i}^{\mathcal{F}} &= \frac{P_{i}^{\mathcal{F}}}{1 - \ell P_{0}^{\mathcal{F}} + \ell P_{0}^{\mathcal{F}}\cosh a\eta + \ell P_{1}^{\mathcal{F}}\sinh a\eta}, \ i = 2, 3. \end{split}$$

Deformed Doppler shift

$$\omega_{\xi} = rac{\omega}{\ell \omega + (1-\ell \omega) e^{a \xi}} \, .$$

Rindler translation generators associated to accelerated observers in the 1-direction

Act on $P^{\mathcal{F}}_{\mu}$ with deformed boost in the 1-direction and a dilation in the (η, ξ) -plane

$$\begin{split} P_{\eta}^{\mathcal{F}} &= \frac{P_{0}^{\mathcal{F}}\cosh a\eta + P_{1}^{\mathcal{F}}\sinh a\eta}{\ell P_{0}^{\mathcal{F}}\cosh a\eta + \ell P_{1}^{\mathcal{F}}\sinh a\eta + (1 - P_{0}^{\mathcal{F}}\ell)e^{-a\xi}} \\ P_{\xi}^{\mathcal{F}} &= \frac{P_{0}^{\mathcal{F}}\sinh a\eta + P_{1}^{\mathcal{F}}\cosh a\eta}{\ell P_{0}^{\mathcal{F}}\cosh a\eta + \ell P_{1}^{\mathcal{F}}\sinh a\eta + (1 - P_{0}^{\mathcal{F}}\ell)e^{-a\xi}} \\ P_{i}^{\mathcal{F}} &= \frac{P_{i}^{\mathcal{F}}}{1 - \ell P_{0}^{\mathcal{F}} + \ell P_{0}^{\mathcal{F}}\cosh a\eta + \ell P_{1}^{\mathcal{F}}\sinh a\eta}, \ i = 2, 3. \end{split}$$

Deformed Doppler shift

$$\omega_{\xi} = rac{\omega}{\ell \omega + (1-\ell \omega) e^{a \xi}} \ .$$

Finite blueshift at the accelerated horizon $\xi \to -\infty!$

Rindler translation generators associated to accelerated observers in the 1-direction

Act on $P^{\mathcal{F}}_{\mu}$ with deformed boost in the 1-direction and a dilation in the (η, ξ) -plane

$$\begin{split} P_{\eta}^{\mathcal{F}} &= \frac{P_{0}^{\mathcal{F}}\cosh a\eta + P_{1}^{\mathcal{F}}\sinh a\eta}{\ell P_{0}^{\mathcal{F}}\cosh a\eta + \ell P_{1}^{\mathcal{F}}\sinh a\eta + (1 - P_{0}^{\mathcal{F}}\ell)e^{-a\xi}} \\ P_{\xi}^{\mathcal{F}} &= \frac{P_{0}^{\mathcal{F}}\sinh a\eta + P_{1}^{\mathcal{F}}\cosh a\eta}{\ell P_{0}^{\mathcal{F}}\cosh a\eta + \ell P_{1}^{\mathcal{F}}\sinh a\eta + (1 - P_{0}^{\mathcal{F}}\ell)e^{-a\xi}} \\ P_{i}^{\mathcal{F}} &= \frac{P_{i}^{\mathcal{F}}}{1 - \ell P_{0}^{\mathcal{F}} + \ell P_{0}^{\mathcal{F}}\cosh a\eta + \ell P_{1}^{\mathcal{F}}\sinh a\eta}, \ i = 2, 3. \end{split}$$

Deformed Doppler shift

$$\omega_{\xi} = rac{\omega}{\ell \omega + (1-\ell \omega) e^{a \xi}} \ .$$

Finite blueshift at the accelerated horizon $\xi \to -\infty!$

Could this act as a "covariant brick wall"?

Warm up: mode counting for a field in twisted Poincaré

$$n(E) = \frac{V}{(2\pi)^3} \int_E d\mu(p) \, 2p_0 \, \delta(\mathcal{C}) \, \theta(p_0) \,,$$

Warm up: mode counting for a field in twisted Poincaré

$$n(E) = \frac{V}{(2\pi)^3} \int_E d\mu(p) \, 2p_0 \, \delta(\mathcal{C}) \, \theta(p_0) \,,$$

Which momentum space measure?

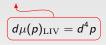
Warm up: mode counting for a field in twisted Poincaré

$$n(E) = \frac{V}{(2\pi)^3} \int_E d\mu(p) \, 2p_0 \, \delta(\mathcal{C}) \, \theta(p_0) \,,$$

Which momentum space measure?

To LIV or not to LIV? (Gubitosi and Magueijo, Class. Quant. Grav. 33, no. 11, 115021 (2016))

Covariant under deformed boosts



$$d\mu(p)_{\mathrm{C}}=rac{d^4p}{(1-\ell p_0)^5}$$

Warm up: mode counting for a field in twisted Poincaré

$$n(E) = \frac{V}{(2\pi)^3} \int_E d\mu(p) \, 2p_0 \, \delta(\mathcal{C}) \, \theta(p_0) \,,$$

Which momentum space measure?

To LIV or not to LIV? (Gubitosi and Magueijo, Class. Quant. Grav. 33, no. 11, 115021 (2016))

Covariant under deformed boosts

The resulting density of states are

$$n(E)_{\rm LIV} = \frac{2V}{(2\pi)^2} \left[\frac{E^3}{3} - \frac{\ell E^4}{2} + \frac{\ell^2 E^5}{5} \right]$$

$$n(E)_{\rm C} = \frac{V}{(2\pi)^2} \frac{1}{\ell^3} \left[\frac{\ell E(3\ell E - 2)}{(1 - \ell E)^2} - 2\log(1 - \ell E) \right]$$

Finte density of states fo LIV measure

Boosts saturate at $1/\ell$, maximal energy, what about density of states?

Finte density of states fo LIV measure

Boosts saturate at $1/\ell$, maximal energy, what about density of states?

$$\lim_{E\to 1/\ell} n(E)_{\rm C} = \infty$$

Finte density of states fo LIV measure

Boosts saturate at $1/\ell$, maximal energy, what about density of states?

$$\lim_{E\to 1/\ell} n(E)_{\rm C} = \infty$$

However using the LIV measure

$$\lim_{E \to 1/\ell} n(E)_{\rm LIV} = \frac{V}{(2\pi)^2} \frac{1}{15\ell^3} \,,$$

we have a finite number of states all the way up to the Planck scale

Deformed Rindler: brick-wall from twist?

Look at twisted generalization of

$$n(E) = rac{V_{\perp}}{(2\pi)^3} \int_{\mathbb{R}} d\xi \int dp_{\eta} dp_{\xi} dp_{\perp}^2 2p_{\eta} e^{-2a\xi} \,\delta(\mathcal{C})\theta(p_{\eta}) \,.$$

Deformed Rindler: brick-wall from twist?

Look at twisted generalization of

$$n(E) = \frac{V_{\perp}}{(2\pi)^3} \int_{\mathbb{R}} d\xi \int dp_{\eta} dp_{\xi} dp_{\perp}^2 2p_{\eta} e^{-2a\xi} \,\delta(\mathcal{C})\theta(p_{\eta}) \,.$$

Sparing you the details the final result one gets is

$$n(E) = \frac{V_{\perp}}{(2\pi)^3} \int_{\mathbb{R}} d\xi \int d\mu(p_{\eta}, p_{\xi}, p_{\perp}) \frac{p_{\eta}(1 - \ell p_{\eta})^2 e^{2a\xi} \delta(p_{\eta} - \omega_p)}{(\ell p_{\eta} + (1 - \ell p_{\eta}) e^{a\xi})(p_{\eta} e^{a\xi} + \ell p_{\xi}^2(1 - e^{a\xi}))} \theta(p_{\eta})$$

where ω_p = on-shell energy obtained from deformed Rindler Casimir

$$\mathcal{C}^{\mathcal{F}} = rac{\mathrm{e}^{-2\mathrm{a}\xi}}{(1-\ell P^{\mathcal{F}}_{\eta})^2} \left[-(P^{\mathcal{F}}_{\eta})^2 + (P^{\mathcal{F}}_{\xi})^2 + (P^{\mathcal{F}}_{\perp})^2 (P^{\mathcal{F}}_{\eta}\ell + (1-\ell P^{\mathcal{F}}_{\eta})\mathrm{e}^{\mathrm{a}\xi})^2
ight]$$

Brick-wall from twist? Only if LIV!

Calculate density of states in fully covariant picture

$$n(E)_{\rm C} = rac{V_{\perp}}{(2\pi)^2} rac{e^{-2a\xi_{min}}}{a} \left[rac{E^3}{3} - rac{\ell E^4}{2} + rac{\ell^2 E^5}{5}
ight] \, ,$$

still need a "brick-wall" regulator ξ_{\min} ...

Brick-wall from twist? Only if LIV!

Calculate density of states in fully covariant picture

$$n(E)_{\rm C} = \frac{V_{\perp}}{(2\pi)^2} \frac{e^{-2a\xi_{min}}}{a} \left[\frac{E^3}{3} - \frac{\ell E^4}{2} + \frac{\ell^2 E^5}{5} \right] \,,$$

still need a "brick-wall" regulator ξ_{min} ...

If we LIV we get a finite density of states! $n(E)_{\rm LIV} = -\frac{V_{\perp}}{(2\pi)^2} \frac{1}{6a} \frac{1}{\ell^3} \log(1 - \ell E),$ a bitter win...

• Use Weyl-Poincaré (WP) algebra to describe accelerated observers and horizons

- Use Weyl-Poincaré (WP) algebra to describe accelerated observers and horizons
- Look at deformations of WP algebra to probe Planck-scale features of Rindler space

- Use Weyl-Poincaré (WP) algebra to describe accelerated observers and horizons
- Look at deformations of WP algebra to probe Planck-scale features of Rindler space
- For the particular model of twisted WP algebra two interesting results:

- Use Weyl-Poincaré (WP) algebra to describe accelerated observers and horizons
- Look at deformations of WP algebra to probe Planck-scale features of Rindler space
- For the particular model of twisted WP algebra two interesting results:
 - Finite blueshift at the horizon

- Use Weyl-Poincaré (WP) algebra to describe accelerated observers and horizons
- Look at deformations of WP algebra to probe Planck-scale features of Rindler space
- For the particular model of twisted WP algebra two interesting results:
 - Finite blueshift at the horizon
 - Finite density of states

- Use Weyl-Poincaré (WP) algebra to describe accelerated observers and horizons
- Look at deformations of WP algebra to probe Planck-scale features of Rindler space
- For the particular model of twisted WP algebra two interesting results:
 - Finite blueshift at the horizon
 - Finite density of states (only with LIV measure)

- Use Weyl-Poincaré (WP) algebra to describe accelerated observers and horizons
- Look at deformations of WP algebra to probe Planck-scale features of Rindler space
- For the particular model of twisted WP algebra two interesting results:
 - Finite blueshift at the horizon
 - Finite density of states (only with LIV measure)

NEXT?

• Rindler space locally describes observers under a uniform gravitational field...

- Use Weyl-Poincaré (WP) algebra to describe accelerated observers and horizons
- Look at deformations of WP algebra to probe Planck-scale features of Rindler space
- For the particular model of twisted WP algebra two interesting results:
 - Finite blueshift at the horizon
 - Finite density of states (only with LIV measure)

NEXT?

- Rindler space locally describes observers under a uniform gravitational field...
- (Trans-)Planckian aspects of Unruh and (Hawking) quantum radiance? (Corley and Jacobson, Phys. Rev. D 54, 1568 (1996) [hep-th/9601073].)