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Motivation and definitions

The (2,0) geometry as a toy model

Random Fuzzy Spaces

Preliminary studies in a symmetry-breaking
potential

Higher geometries 



Geometry is encoded in spectral data

Random Fuzzy Spaces



Geometry is encoded in spectral data

The particle content of the Standard Model is
described by the following data

Random Fuzzy Spaces



To get Einstein-Hilbert plus the Standard Model
one considers the spectral triple obtained by
tensoring the commutative manifold with the internal
non-commutative finite space

bosonic action

fermionic action
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The idea: replace the commutative manifold
with a fuzzy space



Random Fuzzy Spaces

The idea: replace the commutative manifold
with a fuzzy space

Fuzzy spaces as spectral triples:

(arXiv:1502.05383)
Barrett
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Path integration over geometries is then
implemented by integration over the space of
Dirac operators

The simplest non-trivial choice for an action 
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Issues:
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Issues:

Huge integral

free parameters



Random Fuzzy Spaces

Issues:

(arXiv:1902.03590)
Barrett, Druce, Glaser

Huge integral

Interpretation of observables is not always
straightforward

free parameters
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(arXiv:1902.03590)
Barrett, Druce, Glaser

Interpretation of observables is not always
straightforward

Issues:

Huge integral

A priori no guarantee of interesting behaviour
or emergent geometry

free parameters
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Barrett, Glaser
(arXiv:1510.01377)

First indication of emergent geometry 
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The (2,0) geometry
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The (2,0) geometry

This suggests that the radius of the circle is an
interesting observable to compute
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Idea for an observable to compute:

p+q = 3
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Idea for an observable to compute:

p+q = 4
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Fuzzy sphere Dirac operator

Standard generators of
su(2)(1, 3) Dirac operator

In general they generate a
much bigger algebra



Random Fuzzy Spaces

Using the Frobenius inner product

we can test whether the algebra of the
L matrices shrinks, for example:

by measuring the angle
between them
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Conclusions
Random fuzzy spaces exhibit phase transitions

No geometric input 

Interesting behaviour potentially emerges
at the critical point

To do
Improve numerics

Higher powers in the action
Analytical understanding

Lorentzian version?
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Thank you for listening


