Random Fuzzy Spaces in the Spectral Triple formalism

13/02/2019
Mauro D'Arcangelo

Quantum Spacetime '19, Bratislava, Slovakia

Random Fuzzy Spaces

Outline

- Motivation and definitions
- Preliminary studies in a symmetry-breaking potential
- The $(2,0)$ geometry as a toy model
- Higher geometries

Random Fuzzy Spaces

Geometry is encoded in spectral data

$$
(A, H, D ; J, \gamma)
$$

Random Fuzzy Spaces

Geometry is encoded in spectral data

$$
(A, H, D ; J, \gamma)
$$

The particle content of the Standard Model is described by the following data

$$
\begin{aligned}
\left(A_{F}, H_{F}\right. & \left., D_{F} ; J_{F}, \gamma_{F}\right) \\
A_{F} & =\mathbb{C} \oplus \mathbb{H} \oplus M_{3}(\mathbb{C}) \\
H_{F} & =\mathbb{C}^{96}
\end{aligned}
$$

Random Fuzzy Spaces

To get Einstein-Hilbert plus the Standard Model one considers the spectral triple obtained by tensoring the commutative manifold with the internal non-commutative finite space
$\left(C^{\infty}(M) \otimes A_{F}, \quad L^{2}(S) \otimes H_{F}, \quad D_{M} \otimes 1+\gamma_{5} \otimes D_{F} ; \quad J_{M} \otimes J_{F}, \quad \gamma_{M} \otimes \gamma_{F}\right)$
bosonic action

$$
\operatorname{Tr}\left(f\left(\frac{D}{\Lambda}\right)\right) \sim \int \mathcal{L}_{M}+\mathcal{L}_{g . f .}+\mathcal{L}_{h}
$$

fermionic action
$\langle J \psi, D \psi\rangle$

Random Fuzzy Spaces

The idea: replace the commutative manifold with a fuzzy space

Random Fuzzy Spaces

The idea: replace the commutative manifold with a fuzzy space

Fuzzy spaces as spectral triples:

$$
\begin{array}{ll}
\mathcal{A}=M_{n}(\mathbb{C}) & \left(\begin{array}{l}
\text { (arXiv:1502.05383) } \\
\mathcal{H}
\end{array}=\mathbb{C}^{c} \otimes M_{n}(\mathbb{C})\right. \\
D=\sum_{i} \alpha_{i} \otimes\left\{H_{i}, \cdot\right\}+\sum_{j} \tau_{j} \otimes\left[L_{i}, \cdot\right]
\end{array}
$$

Random Fuzzy Spaces

Path integration over geometries is then implemented by integration over the space of Dirac operators

$$
\langle f(D)\rangle=\int f(D) e^{-S[D]} d D
$$

The simplest non-trivial choice for an action

$$
S=g_{2} \operatorname{Tr} D^{2}+\operatorname{Tr} D^{4}
$$

Random Fuzzy Spaces

UK \| CHINA \| MALAYSIA

Issues:

Random Fuzzy Spaces

Issues:

- Huge integral

$$
\begin{gathered}
D=\sum_{i} \alpha_{i} \otimes\left\{H_{i}, \cdot\right\}+\sum_{j} \tau_{j} \otimes\left[L_{i}, \cdot\right] \\
\text { free parameters }]
\end{gathered}
$$

Random Fuzzy Spaces

Issues:

- Huge integral

$$
D=\sum_{i} \alpha_{i} \otimes\left\{H_{i}, \cdot\right\}+\sum_{j} \tau_{j} \otimes\left[L_{i}, \cdot\right]
$$

- Interpretation of observables is not always straightforward (arXiv:1902.03590)
Barrett, Druce, Glaser

Random Fuzzy Spaces

Issues:

- Huge integral

$$
D=\sum_{i} \alpha_{i} \otimes\left\{H_{i}, \cdot\right\}+\sum_{j} \tau_{j} \otimes\left[L_{i}, \cdot\right]
$$

- Interpretation of observables is not always straightforward (arXiv:1902.03590) Barrett, Druce, Glaser
- A priori no guarantee of interesting behaviour or emergent geometry

Random Fuzzy Spaces

UK | CHINA | MALAYSIA
First indication of emergent geometry

(a) Type $(1,1), g_{2}=-2.5$

(b) Type $(2,0), g_{2}=-3$

(arXiv:1510.01377)

 Barrett, Glaser(c) Type $(1,3)$ Fuzzy S^{2}

Random Fuzzy Spaces

The $(2,0)$ geometry

$$
\begin{aligned}
& D_{(2,0)}=\gamma_{1} \otimes\left\{H_{1}, \cdot\right\}+\gamma_{2} \otimes\left\{H_{2}, \cdot\right\} \\
& \gamma_{1}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \quad \gamma_{2}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

Random Fuzzy Spaces

UK | CHINA | MALAYSIA
The $(2,0)$ geometry

This suggests that the radius of the circle is an interesting observable to compute

Random Fuzzy Spaces

Idea for an observable to compute:

$$
F=\frac{1}{\mathcal{N}} \sum_{i}\left(\operatorname{Tr} H_{i}\right)^{2}
$$

$p+q=3$

Random Fuzzy Spaces

Idea for an observable to compute:

$$
F=\frac{1}{\mathcal{N}} \sum_{i}\left(\operatorname{Tr} H_{i}\right)^{2}
$$

$p+q=4$

Random Fuzzy Spaces

Fuzzy sphere Dirac operator

$$
\begin{array}{r}
D_{f s}=\gamma^{0} \otimes I+\sum_{j<k=1}^{3} \gamma^{0} \gamma^{j} \gamma^{k} \otimes\left[L_{j k}, \cdot\right] \\
\text { Standard generators of } \\
\text { su(2) }
\end{array}
$$

$(1,3)$ Dirac operator

$$
D_{13}=\gamma^{0} \otimes\left\{H_{0}, \cdot\right\}+\gamma^{1} \gamma^{2} \gamma^{3} \otimes\left\{H_{123}, \cdot\right\}+
$$

$$
\sum_{i=1}^{3} \gamma^{i} \otimes\left[L_{i}, \cdot\right]+\sum_{j<k=1}^{3} \gamma^{0} \gamma^{j} \gamma^{k} \otimes\left[L_{j k}, \cdot\right]
$$

In general they generate a \qquad
much bigger algebra

Random Fuzzy Spaces

Using the Frobenius inner product

$$
\langle A, B\rangle=\operatorname{Tr} A^{\dagger} B=\|A\| \cdot\|B\| \cos \theta
$$

we can test whether the algebra of the
L matrices shrinks, for example:

$$
\begin{gathered}
{\left[L_{j k}, L_{l m}\right]} \\
\downarrow \downarrow L_{r s} \\
\downarrow \downarrow
\end{gathered}
$$

by measuring the angle
between them

Random Fuzzy Spaces

Random Fuzzy Spaces

Conclusions

- Random fuzzy spaces exhibit phase transitions
- Interesting behaviour potentially emerges at the critical point
- No geometric input

To do

- Improve numerics
- Analytical understanding
- Higher powers in the action
- Lorentzian version?

Random Fuzzy Spaces

Thank you for listening

