# Are **locality** and **renormalisation** reconcilable ?

Sylvie Paycha University of Potsdam On leave from the University Clermont-Auvergne joint work with Pierre Clavier, Li Guo and Bin Zhang

Quantum Spacetime 2019, Bratislava, February 13th 2019

### Brain teaser 1

What does the harmonic sum

$$S := "1 + \frac{1}{2} + \dots + \frac{1}{n} + \dots " = \sum_{k=1}^{\infty} k^{-1}$$

have in common with a

### Brain teaser 1

What does the  $harmonic \ sum$ 

$$S := "1 + \frac{1}{2} + \dots + \frac{1}{n} + \dots " = \sum_{k=1}^{\infty} k^{-1}$$
"

have in common with a particle accelerator?



Occurence of singularities/ divergences

• at s = 1 in the Riemann  $\zeta$ -function  $\zeta(s) := \sum_{k=1}^{\infty} k^{-s}$ ;

#### Occurence of singularities/ divergences

- at s = 1 in the Riemann  $\zeta$ -function  $\zeta(s) := \sum_{k=1}^{\infty} k^{-s}$ ;
- at  $\infty$  in the ill-defined **Feynman integral** 
  - "  $\int_{\mathbb{R}^4} \frac{1}{|k|^2 + m^2} dk = \operatorname{Vol}(S^3) \int_0^\infty \frac{r^3}{r^2 + m^2} dr$ ".

#### Occurence of singularities/ divergences

- at s = 1 in the Riemann  $\zeta$ -function  $\zeta(s) := \sum_{k=1}^{\infty} k^{-s}$ ;
- at  $\infty$  in the ill-defined Feynman integral "  $\int_{1}^{1} dk = Vol(S^3) \int_{1}^{\infty} r^3 dr$ "

$$\int_{\mathbb{R}^4} \frac{1}{|k|^2 + m^2} dk = \operatorname{Vol}(5^\circ) \int_0^{\infty} \frac{1}{r^2 + m^2} dr$$

#### Extracting divergences

#### Occurence of singularities/ divergences

- at s = 1 in the Riemann  $\zeta$ -function  $\zeta(s) := \sum_{k=1}^{\infty} k^{-s}$ ;
- at  $\infty$  in the ill-defined Feynman integral " $\int_{\mathbb{R}^4} \frac{1}{|k|^2 + m^2} dk = \operatorname{Vol}(S^3) \int_0^\infty \frac{r^3}{r^2 + m^2} dr$ ".

#### Extracting divergences

• 
$$\zeta$$
-function:  $\zeta(s) - \underbrace{\frac{1}{s-1}}_{\text{counterterm}} = \gamma + O(|s-1|) \xrightarrow[s \to 1]{\gamma} =: \zeta^{\text{reg}}(1)$ 

#### Occurence of singularities/ divergences

- at s = 1 in the Riemann  $\zeta$ -function  $\zeta(s) := \sum_{k=1}^{\infty} k^{-s}$ ;
- at  $\infty$  in the ill-defined Feynman integral "  $\int_{\mathbb{R}^4} \frac{1}{|k|^2 + m^2} dk = \operatorname{Vol}(S^3) \int_0^\infty \frac{r^3}{r^2 + m^2} dr$ ".

#### Extracting divergences

• 
$$\zeta$$
-function:  $\zeta(s) - \frac{1}{\underbrace{s-1}} = \gamma + O(|s-1|) \xrightarrow[s \to 1]{\gamma} =: \zeta^{\operatorname{reg}}(1)$ 

counterterm

• Feynman integrals: 
$$\int_0^R \frac{r^3}{r^2 + m^2} dr - \underbrace{\left(\frac{R^2}{2} + m^2 \log R\right)}_{2}$$

counterterm

$$\xrightarrow[R\to\infty]{} m^2 \log m =: \oint_0^\infty \frac{r^3}{r^2 + m^2} dr.$$

Divergent products of sums and integrals

$$(\zeta(s))^2 - \text{counterterms} \xrightarrow[s \to 1]{?} \zeta^{\text{reg}}(1)^2 = \gamma^2;$$

Divergent products of sums and integrals

$$(\zeta(s))^{2} - \text{counterterms} \xrightarrow{?}_{s \to 1} \zeta^{\text{reg}}(1)^{2} = \gamma^{2};$$
$$\int_{0}^{R} \frac{r^{3}}{r^{2} + m^{2}} dr \Big)^{2} - \text{counterterms} \xrightarrow{?}_{R \to \infty} \left( \int_{0}^{\infty} \frac{r^{3}}{r^{2} + m^{2}} dr \right)^{2}.$$

Divergent products of sums and integrals

$$(\zeta(s))^2 - \text{counterterms} \xrightarrow{?}_{s \to 1} \zeta^{\text{reg}}(1)^2 = \gamma^2;$$

$$\left(\int_0^R \frac{r^3}{r^2 + m^2} dr\right)^2$$
 - counterterms  $\underset{R \to \infty}{\longrightarrow} \left(\int_0^\infty \frac{r^3}{r^2 + m^2} dr\right)^2$ 

Divergent counterterms might combine with convergent terms to contribute to finite terms.

Divergent products of sums and integrals

$$(\zeta(s))^2$$
 - counterterms  $\xrightarrow{?}_{s \to 1} \zeta^{\operatorname{reg}}(1)^2 = \gamma^2;$ 

$$\left(\int_0^R \frac{r^3}{r^2 + m^2} \, dr\right)^2 - \text{counterterms} \xrightarrow[R \to \infty]{} \left(\int_0^\infty \frac{r^3}{r^2 + m^2} \, dr\right)^2$$

Divergent counterterms might combine with convergent terms to contribute to finite terms.

Divergent products of sums and integrals

$$(\zeta(s))^2$$
 - counterterms  $\xrightarrow{?}_{s \to 1} \zeta^{\operatorname{reg}}(1)^2 = \gamma^2;$ 

$$\left(\int_0^R \frac{r^3}{r^2 + m^2} \, dr\right)^2 - \text{counterterms} \xrightarrow[R \to \infty]{} \left(\int_0^\infty \frac{r^3}{r^2 + m^2} \, dr\right)^2$$

Divergent counterterms might combine with convergent terms to contribute to finite terms.

Sums and integrals associated with higher algebraic structures

• multiple integrals associated with Feynman diagrams.

Divergent products of sums and integrals

$$(\zeta(s))^2$$
 - counterterms  $\xrightarrow{?}_{s \to 1} \zeta^{\operatorname{reg}}(1)^2 = \gamma^2;$ 

$$\left(\int_0^R \frac{r^3}{r^2 + m^2} dr\right)^2 - \text{counterterms} \xrightarrow[R \to \infty]{} \left(\int_0^\infty \frac{r^3}{r^2 + m^2} dr\right)^2$$

Divergent counterterms might combine with convergent terms to contribute to finite terms.

- multiple integrals associated with Feynman diagrams.
- multizeta functions (nested sums) that generalise to

Divergent products of sums and integrals

$$(\zeta(s))^2$$
 - counterterms  $\xrightarrow{?}_{s \to 1} \zeta^{\operatorname{reg}}(1)^2 = \gamma^2;$ 

$$\left(\int_0^R \frac{r^3}{r^2 + m^2} \, dr\right)^2 - \text{counterterms} \xrightarrow[R \to \infty]{} \left(\int_0^\infty \frac{r^3}{r^2 + m^2} \, dr\right)^2$$

Divergent counterterms might combine with convergent terms to contribute to finite terms.

- multiple integrals associated with Feynman diagrams.
- multizeta functions (nested sums) that generalise to
  - conical zeta functions associated with cones;

Divergent products of sums and integrals

$$(\zeta(s))^2$$
 - counterterms  $\xrightarrow{?}_{s \to 1} \zeta^{\operatorname{reg}}(1)^2 = \gamma^2;$ 

$$\left(\int_0^R \frac{r^3}{r^2 + m^2} \, dr\right)^2 - \text{counterterms} \underset{R \to \infty}{\xrightarrow{?}} \left(\int_0^\infty \frac{r^3}{r^2 + m^2} \, dr\right)^2$$

Divergent counterterms might combine with convergent terms to contribute to finite terms.

- multiple integrals associated with Feynman diagrams.
- multizeta functions (nested sums) that generalise to
  - conical zeta functions associated with cones;
  - branched zeta functions associated with trees.

### A first naive approach

#### A first naive approach

*f<sub>i</sub>(z) = a<sub>i</sub>z<sup>-1</sup> + h<sub>i</sub>(z) ∈ M*, the set of meromorphic germs in one variable with a simple pole at zero;

#### A first naive approach

- f<sub>i</sub>(z) = a<sub>i</sub>z<sup>-1</sup> + h<sub>i</sub>(z) ∈ M, the set of meromorphic germs in one variable with a simple pole at zero;
- Subtract the pole and evaluate the holomorphic part at the zero pole:  $f_i^{\text{reg}}(0) = \lim_{z \to 0} \left( f_i(z) \underbrace{a_i z^{-1}}_{\text{counterterms}} \right) := h_i(0).$

#### A first naive approach

- f<sub>i</sub>(z) = a<sub>i</sub>z<sup>-1</sup> + h<sub>i</sub>(z) ∈ M, the set of meromorphic germs in one variable with a simple pole at zero;
- Subtract the pole and evaluate the holomorphic part at the zero pole:  $f_i^{\text{reg}}(0) = \lim_{z \to 0} \left( f_i(z) \underbrace{a_i z^{-1}}_{\text{counterterms}} \right) := h_i(0).$
- Loss of multiplicativity :  $(f_1(z) f_2(z) \text{counterterms}) \xrightarrow[z \to 0]{}$  $(f_1 f_2)^{\text{reg}}(0) := f_1^{\text{reg}}(0) f_2^{\text{reg}}(0) + \underbrace{a_1 \cdot h_2'(0) + a_2 \cdot h_1'(0)}_{\text{extra terms}} \neq f_1^{\text{reg}}(0) f_2^{\text{reg}}(0).$

#### A first naive approach

- f<sub>i</sub>(z) = a<sub>i</sub>z<sup>-1</sup> + h<sub>i</sub>(z) ∈ M, the set of meromorphic germs in one variable with a simple pole at zero;
- Subtract the pole and evaluate the holomorphic part at the zero pole:  $f_i^{\text{reg}}(0) = \lim_{z \to 0} \left( f_i(z) \underbrace{a_i z^{-1}}_{\text{counterterms}} \right) := h_i(0).$
- Loss of multiplicativity :  $(f_1(z) f_2(z) \text{counterterms}) \xrightarrow[z \to 0]{}$  $(f_1 f_2)^{\text{reg}}(0) := f_1^{\text{reg}}(0) f_2^{\text{reg}}(0) + \underbrace{a_1 \cdot h_2'(0) + a_2 \cdot h_1'(0)}_{} \neq f_1^{\text{reg}}(0) f_2^{\text{reg}}(0).$

extra terms

#### Example

$$(f_1(z) = z \land f_2(z) = \frac{1}{z}) \Longrightarrow f_1^{\operatorname{reg}}(0) f_2^{\operatorname{reg}}(0) = 0 \neq 1 = (f_1 f_2)^{\operatorname{reg}}(0).$$

### Alternative approach: a multivariate point of view

#### Alternative approach: a multivariate point of view

• multivariate meromorphic germ:  $f_1(z_1) f_2(z_2) = \underbrace{\frac{a_1 a_2}{z_1 z_2} + a_1 h'_2(0) \frac{z_2}{z_1} + a_2 h'_1(0) \frac{z_1}{z_2}}_{z_1} + h_1(z_1) h_2(z_2);$ 

counterterms

#### Alternative approach: a multivariate point of view

- multivariate meromorphic germ:  $f_{1}(z_{1}) f_{2}(z_{2}) = \underbrace{\frac{a_{1} a_{2}}{z_{1} z_{2}} + a_{1} h_{2}'(0) \frac{z_{2}}{z_{1}} + a_{2} h_{1}'(0) \frac{z_{1}}{z_{2}}}_{\text{counterterms}} + h_{1}(z_{1}) h_{2}(z_{2});$
- independence/ locality/ orthogonality relation:  $\frac{1}{z_1} \perp z_2$ ;  $\frac{1}{z_2} \perp z_1$ ;

#### Alternative approach: a multivariate point of view

• multivariate meromorphic germ:  $f_{1}(z_{1}) f_{2}(z_{2}) = \underbrace{\frac{a_{1} a_{2}}{z_{1} z_{2}} + a_{1} h_{2}'(0) \frac{z_{2}}{z_{1}} + a_{2} h_{1}'(0) \frac{z_{1}}{z_{2}}}_{\text{counterterms}} + h_{1}(z_{1}) h_{2}(z_{2});$ • independence/ locality/ orthogonality relation:  $\frac{1}{z_{1}} \perp z_{2}; \frac{1}{z_{2}} \perp z_{1};$ •  $(f_{1}(z_{1}) f_{2}(z_{2}) - \text{counterterms}) \xrightarrow{z_{i} \to 0} h_{1}(0) h_{2}(0) =: (f_{1} f_{1})^{\text{reg}}(0).$ 

#### Alternative approach: a multivariate point of view

- multivariate meromorphic germ:  $f_1(z_1) f_2(z_2) = \underbrace{\frac{a_1 a_2}{z_1 z_2} + a_1 h'_2(0) \frac{z_2}{z_1} + a_2 h'_1(0) \frac{z_1}{z_2}}_{\text{counterterms}} + h_1(z_1) h_2(z_2);$ • independence/ locality/ orthogonality relation:  $\frac{1}{z_1} \perp z_2; \frac{1}{z_2} \perp z_1;$
- $(f_1(z_1) f_2(z_2) \text{counterterms}) \xrightarrow{z_i \to 0} h_1(0) h_2(0) =: (f_1 f_1)^{\text{reg}}(0).$

#### Partial multiplicativity in a locality set up (yet to be defined)

Multiplicativity holds for independent functions:

#### Alternative approach: a multivariate point of view

- multivariate meromorphic germ:  $f_1(z_1) f_2(z_2) = \underbrace{\frac{a_1 a_2}{z_1 z_2} + a_1 h'_2(0) \frac{z_2}{z_1} + a_2 h'_1(0) \frac{z_1}{z_2}}_{\text{counterterms}} + h_1(z_1) h_2(z_2);$ • independence/ locality/ orthogonality relation:  $\frac{1}{z_1} \perp z_2; \frac{1}{z_2} \perp z_1;$
- $(f_1(z_1) f_2(z_2) \text{counterterms}) \xrightarrow[z_i \to 0]{} h_1(0) h_2(0) =: (f_1 f_1)^{\text{reg}}(0).$

Partial multiplicativity in a locality set up (yet to be defined)

Multiplicativity holds for independent functions:

$$f_1 \perp f_2 \Longrightarrow f_1^{\operatorname{reg}}(0) f_2^{\operatorname{reg}}(0) = (f_1 f_2)^{\operatorname{reg}}(0).$$

#### Because we want to

• evaluate Feynman integrals in quantum field theory,

#### Because we want to

- evaluate Feynman integrals in quantum field theory,
- evaluate multizeta functions at poles and their generalisations higher zeta functions,

#### Because we want to

- evaluate Feynman integrals in quantum field theory,
- evaluate multizeta functions at poles and their generalisations higher zeta functions,
  - count integer points on cones and evaluate conical zeta functions at poles,

#### Because we want to

- evaluate Feynman integrals in quantum field theory,
- evaluate multizeta functions at poles and their generalisations higher zeta functions,
  - count integer points on cones and evaluate conical zeta functions at poles,
  - evaluate branched zeta functions associated with trees.

#### Because we want to

- evaluate Feynman integrals in quantum field theory,
- evaluate multizeta functions at poles and their generalisations higher zeta functions,
  - count integer points on cones and evaluate conical zeta functions at poles,
  - evaluate branched zeta functions associated with trees.

while preserving locality / multiplicativity.

#### The data

#### The data

• a (commutative) algebra  $(\mathcal{A}, m_A)$ ,

#### The data

- a (commutative) algebra  $(\mathcal{A}, m_A)$ ,
- the algebra of univariate meromorphic germs at zero ( $\mathcal{M}(\mathbb{C}),\cdot),$

#### The data

- a (commutative) algebra  $(\mathcal{A}, m_A)$ ,
- the algebra of univariate meromorphic germs at zero  $(\mathcal{M}(\mathbb{C}),\cdot),$
- a morphism  $\phi : (\mathcal{A}, m_{\mathcal{A}}) \longrightarrow (\mathcal{M}(\mathbb{C}), \cdot) : \phi(a_1 a_2) = \phi(a_1) \phi(a_2).$

#### The data

- a (commutative) algebra  $(\mathcal{A}, m_A)$ ,
- the algebra of univariate meromorphic germs at zero  $(\mathcal{M}(\mathbb{C}),\cdot),$
- a morphism  $\phi : (\mathcal{A}, m_A) \longrightarrow (\mathcal{M}(\mathbb{C}), \cdot) : \phi(a_1 a_2) = \phi(a_1) \phi(a_2).$

#### Aim

#### The data

- a (commutative) algebra  $(\mathcal{A}, m_A)$ ,
- the algebra of univariate meromorphic germs at zero  $(\mathcal{M}(\mathbb{C}),\cdot)$ ,
- a morphism  $\phi : (\mathcal{A}, m_{\mathcal{A}}) \longrightarrow (\mathcal{M}(\mathbb{C}), \cdot) : \phi(a_1 a_2) = \phi(a_1) \phi(a_2).$

#### Aim

Build a character  $\phi^{\operatorname{ren}}$ :  $(\mathcal{A}, m_{\mathcal{A}}) \longrightarrow (\mathbb{C}, \cdot)$ .

#### The data

- a (commutative) algebra  $(\mathcal{A}, m_A)$ ,
- the algebra of univariate meromorphic germs at zero  $(\mathcal{M}(\mathbb{C}),\cdot)$ ,
- a morphism  $\phi : (\mathcal{A}, m_{\mathcal{A}}) \longrightarrow (\mathcal{M}(\mathbb{C}), \cdot) : \phi(a_1 a_2) = \phi(a_1) \phi(a_2).$

#### Aim

Build a character 
$$\phi^{\operatorname{ren}}$$
:  $(\mathcal{A}, m_{\mathcal{A}}) \longrightarrow (\mathbb{C}, \cdot)$ .

#### A first naive approach

#### The data

- a (commutative) algebra  $(\mathcal{A}, m_A)$ ,
- the algebra of univariate meromorphic germs at zero  $(\mathcal{M}(\mathbb{C}),\cdot)$ ,
- a morphism  $\phi : (\mathcal{A}, m_{\mathcal{A}}) \longrightarrow (\mathcal{M}(\mathbb{C}), \cdot) : \phi(a_1 a_2) = \phi(a_1) \phi(a_2).$

#### Aim

Build a character 
$$\phi^{\operatorname{ren}}$$
:  $(\mathcal{A}, m_{\mathcal{A}}) \longrightarrow (\mathbb{C}, \cdot)$ .

#### A first naive approach

Use the regularised evaluation to build  $\phi^{reg} := ev_0^{reg} \circ \phi$ .

#### The data

- a (commutative) algebra  $(\mathcal{A}, m_A)$ ,
- the algebra of univariate meromorphic germs at zero  $(\mathcal{M}(\mathbb{C}),\cdot)$ ,
- a morphism  $\phi : (\mathcal{A}, m_{\mathcal{A}}) \longrightarrow (\mathcal{M}(\mathbb{C}), \cdot) : \phi(a_1 a_2) = \phi(a_1) \phi(a_2).$

#### Aim

Build a character 
$$\phi^{\operatorname{ren}}$$
 :  $(\mathcal{A}, m_{\mathcal{A}}) \longrightarrow (\mathbb{C}, \cdot)$ .

#### A first naive approach

Use the regularised evaluation to build  $\phi^{\text{reg}} := \text{ev}_0^{\text{reg}} \circ \phi$ . Yet the "multiplicativity" (and hence the locality ) is spoiled:

#### The data

- a (commutative) algebra  $(\mathcal{A}, m_A)$ ,
- the algebra of univariate meromorphic germs at zero  $(\mathcal{M}(\mathbb{C}),\cdot)$ ,
- a morphism  $\phi : (\mathcal{A}, m_{\mathcal{A}}) \longrightarrow (\mathcal{M}(\mathbb{C}), \cdot) : \phi(a_1 a_2) = \phi(a_1) \phi(a_2).$

#### Aim

Build a character 
$$\phi^{\operatorname{ren}}$$
 :  $(\mathcal{A}, m_{\mathcal{A}}) \longrightarrow (\mathbb{C}, \cdot)$ .

#### A first naive approach

Use the regularised evaluation to build  $\phi^{\text{reg}} := \text{ev}_0^{\text{reg}} \circ \phi$ . Yet the "multiplicativity" (and hence the locality ) is spoiled:

 $\phi^{\operatorname{reg}}(a_1 a_2) \neq \phi^{\operatorname{reg}}(a_1) \phi^{\operatorname{reg}}(a_2).$ 



## A second coalgebraic approach



## A second coalgebraic approach





## A second coalgebraic approach



#### The data

• A graded algebra  $\mathcal{A} = \bigoplus_{n=0}^{\infty} \mathcal{A}_n$  and a target algebra  $(\mathcal{B}, m_B)$ .

#### The data

- A graded algebra  $\mathcal{A} = \bigoplus_{n=0}^{\infty} \mathcal{A}_n$  and a target algebra  $(\mathcal{B}, m_B)$ .
- A coproduct  $\Delta_A$  on  $\mathcal{A}$  and a related convolution product  $\phi_1 \star \phi_2 := m_B \circ (\phi_1 \otimes \phi_2) \circ \Delta_A$  of maps  $\phi_i : (\mathcal{A}, m_A) \longrightarrow (\mathcal{B}, m_B)$ .

#### The data

- A graded algebra  $\mathcal{A} = \bigoplus_{n=0}^{\infty} \mathcal{A}_n$  and a target algebra  $(\mathcal{B}, m_B)$ .
- A coproduct  $\Delta_A$  on  $\mathcal{A}$  and a related convolution product  $\phi_1 \star \phi_2 := m_B \circ (\phi_1 \otimes \phi_2) \circ \Delta_A$  of maps  $\phi_i : (\mathcal{A}, m_A) \longrightarrow (\mathcal{B}, m_B)$ .

#### The role of the coproduct: Birkhoff-Hopf factorisation [CK] 98'

The coproduct is used to undo "fake" finite terms arising from hidden subdivergences:  $\phi = \phi_{-}^{*-1} \star \phi_{+}$ .

#### The data

- A graded algebra  $\mathcal{A} = \bigoplus_{n=0}^{\infty} \mathcal{A}_n$  and a target algebra  $(\mathcal{B}, m_B)$ .
- A coproduct  $\Delta_A$  on  $\mathcal{A}$  and a related convolution product  $\phi_1 \star \phi_2 := m_B \circ (\phi_1 \otimes \phi_2) \circ \Delta_A$  of maps  $\phi_i : (\mathcal{A}, m_A) \longrightarrow (\mathcal{B}, m_B)$ .

#### The role of the coproduct: Birkhoff-Hopf factorisation [CK] 98'

The coproduct is used to undo "fake" finite terms arising from hidden subdivergences:  $\phi = \phi_{-}^{*-1} \star \phi_{+}$ .

#### Forest formula [BPHZ] 57-68

#### The data

- A graded algebra  $\mathcal{A} = \bigoplus_{n=0}^{\infty} \mathcal{A}_n$  and a target algebra  $(\mathcal{B}, m_B)$ .
- A coproduct  $\Delta_A$  on  $\mathcal{A}$  and a related convolution product  $\phi_1 \star \phi_2 := m_B \circ (\phi_1 \otimes \phi_2) \circ \Delta_A$  of maps  $\phi_i : (\mathcal{A}, m_A) \longrightarrow (\mathcal{B}, m_B)$ .

#### The role of the coproduct: Birkhoff-Hopf factorisation [CK] 98'

The coproduct is used to undo "fake" finite terms arising from hidden subdivergences:  $\phi = \phi_{-}^{*-1} \star \phi_{+}$ .

#### Forest formula [BPHZ] 57-68

The renormalised map  $\phi^{\text{ren}} := \text{ev}_0 \circ \phi_+$  is multiplicative:  $\phi^{\text{ren}}(a_1 a_2) = \phi^{\text{ren}}(a_1) \phi^{\text{ren}}(a_2).$ 

#### The data

- A graded algebra  $\mathcal{A} = \bigoplus_{n=0}^{\infty} \mathcal{A}_n$  and a target algebra  $(\mathcal{B}, m_B)$ .
- A coproduct  $\Delta_A$  on  $\mathcal{A}$  and a related convolution product  $\phi_1 \star \phi_2 := m_B \circ (\phi_1 \otimes \phi_2) \circ \Delta_A$  of maps  $\phi_i : (\mathcal{A}, m_A) \longrightarrow (\mathcal{B}, m_B)$ .

#### The role of the coproduct: Birkhoff-Hopf factorisation [CK] 98'

The coproduct is used to undo "fake" finite terms arising from hidden subdivergences:  $\phi = \phi_{-}^{*-1} \star \phi_{+}$ .

#### Forest formula [BPHZ] 57-68

The renormalised map  $\phi^{\text{ren}} := \text{ev}_0 \circ \phi_+$  is multiplicative:  $\phi^{\text{ren}}(a_1 a_2) = \phi^{\text{ren}}(a_1) \phi^{\text{ren}}(a_2).$ 



## A third multivariate approach

(with P. Clavier, L. Guo and B. Zhang)

using algebraic locality

## Locality in quantum field theory

#### Independence of events in QFT

An object is only directly influenced by its immediate surroundings. Two events situated in different locations do not influence each other.

## Locality in quantum field theory

#### Independence of events in QFT

An object is only directly influenced by its immediate surroundings. Two events situated in different locations do not influence each other.

#### Independence of measurements

 $\mathsf{Observable}\,\mathcal{O} \longrightarrow \mathsf{Measurement}\,\langle \mathcal{O} \rangle \in \mathbb{C}$ 

$$\underbrace{\mathcal{O}_1 \text{ and } \mathcal{O}_2}_{}$$

locality

 $\langle \mathcal{O}_1 \star \mathcal{O}_2 \rangle = \langle \mathcal{O}_1 \rangle \langle \mathcal{O}_2 \rangle \,.$ 

multiplicativity

## Locality in quantum field theory

#### Independence of events in QFT

An object is only directly influenced by its immediate surroundings. Two events situated in different locations do not influence each other.

Independence of measurements

 $\mathsf{Observable}\,\mathcal{O} \longrightarrow \mathsf{Measurement}\,\langle \mathcal{O} \rangle \in \mathbb{C}$ 



Analogy: separation of variables  $(n = n_1 + n_2)$ 

$$\underbrace{\int_{\mathbb{R}^n} f_1(x_1) f_2(x_2) dx_1 dx_2}_{x_1 \text{ and } x_2 \text{ independent}} = \underbrace{\left(\int_{\mathbb{R}^{n_1}} f_1(x_1) dx_1\right) \cdot \left(\int_{\mathbb{R}^{n_2}} f_2(x_2) dx_2\right)}_{\text{multiplicativity}}.$$

#### Our plan

We want to swap

#### Our plan

We want to swap

the coproduct on the source space A for a locality relation on the target space M: Δ<sub>A</sub> → T<sub>M</sub>;

#### Our plan

We want to swap

- the coproduct on the source space  $\mathcal{A}$  for a locality relation on the target space  $\mathcal{M}: \Delta_{\mathcal{A}} \rightsquigarrow \top_{\mathcal{M}};$
- univariate for multivariate meromorphic functions:  $\mathcal{M}(\mathbb{C}) \rightsquigarrow \mathcal{M}(\mathbb{C}^{\infty});$

#### Our plan

We want to swap

- the coproduct on the source space  $\mathcal{A}$  for a locality relation on the target space  $\mathcal{M}: \Delta_{\mathcal{A}} \rightsquigarrow \top_{\mathcal{M}};$
- univariate for multivariate meromorphic functions:  $\mathcal{M}(\mathbb{C}) \rightsquigarrow \mathcal{M}(\mathbb{C}^{\infty});$
- Birkhoff-Hopf factorisation for a (naive) multivariate projection  $\phi_+ \rightsquigarrow \pi_+ \circ \phi$ .

#### Our plan

#### We want to swap

- the coproduct on the source space  $\mathcal{A}$  for a locality relation on the target space  $\mathcal{M}: \Delta_{\mathcal{A}} \rightsquigarrow \top_{\mathcal{M}};$
- univariate for multivariate meromorphic functions:  $\mathcal{M}(\mathbb{C}) \rightsquigarrow \mathcal{M}(\mathbb{C}^{\infty});$
- Birkhoff-Hopf factorisation for a (naive) multivariate projection  $\phi_+ \rightsquigarrow \pi_+ \circ \phi$ .

#### What for?

#### Our plan

#### We want to swap

- the coproduct on the source space  $\mathcal{A}$  for a locality relation on the target space  $\mathcal{M}: \Delta_{\mathcal{A}} \rightsquigarrow \top_{\mathcal{M}};$
- univariate for multivariate meromorphic functions:  $\mathcal{M}(\mathbb{C}) \rightsquigarrow \mathcal{M}(\mathbb{C}^{\infty});$
- Birkhoff-Hopf factorisation for a (naive) multivariate projection  $\phi_+ \rightsquigarrow \pi_+ \circ \phi$ .

#### What for?

• It naturally encompasses the locality principle;

#### Our plan

#### We want to swap

- the coproduct on the source space  $\mathcal{A}$  for a locality relation on the target space  $\mathcal{M}: \Delta_{\mathcal{A}} \rightsquigarrow \top_{\mathcal{M}};$
- univariate for multivariate meromorphic functions:  $\mathcal{M}(\mathbb{C}) \rightsquigarrow \mathcal{M}(\mathbb{C}^{\infty});$
- Birkhoff-Hopf factorisation for a (naive) multivariate projection  $\phi_+ \rightsquigarrow \pi_+ \circ \phi$ .

#### What for?

- It naturally encompasses the locality principle;
- Its universality: renormalisation π<sub>+</sub> takes place on the target space *M*(ℂ<sup>∞</sup>) common to various problems.

#### Our plan

#### We want to swap

- the coproduct on the source space  $\mathcal{A}$  for a locality relation on the target space  $\mathcal{M}: \Delta_{\mathcal{A}} \rightsquigarrow \top_{\mathcal{M}};$
- univariate for multivariate meromorphic functions:  $\mathcal{M}(\mathbb{C}) \rightsquigarrow \mathcal{M}(\mathbb{C}^{\infty});$
- Birkhoff-Hopf factorisation for a (naive) multivariate projection  $\phi_+ \rightsquigarrow \pi_+ \circ \phi$ .

#### What for?

- It naturally encompasses the locality principle;
- Its universality: renormalisation π<sub>+</sub> takes place on the target space *M*(ℂ<sup>∞</sup>) common to various problems.



## LOCALITY



## LOCALITY





## LOCALITY



## Local functionals in QFT

Functionals *F* on fields  $\phi$  of the form  $F(\phi) = \int_M f(j_x^k(\phi)) dx$ , where  $j_x^k(\phi)$  is the *k*-th jet of  $\phi$  at *x*. Here,  $\text{Supp}(f(\psi)) \subset \text{Supp}(\psi)$ .

#### Local functionals in QFT

Functionals F on fields  $\phi$  of the form  $F(\phi) = \int_M f(j_x^k(\phi)) dx$ , where  $j_x^k(\phi)$  is the *k*-th jet of  $\phi$  at *x*. Here,  $\text{Supp}(f(\psi)) \subset \text{Supp}(\psi)$ .

#### Locality also arises in

 Analysis: local operators (differential operators), local Dirichlet forms (built from differential operators)

#### Local functionals in QFT

Functionals F on fields  $\phi$  of the form  $F(\phi) = \int_M f(j_x^k(\phi)) dx$ , where  $j_x^k(\phi)$  is the *k*-th jet of  $\phi$  at *x*. Here,  $\text{Supp}(f(\psi)) \subset \text{Supp}(\psi)$ .

#### Locality also arises in

- Analysis: local operators (differential operators), local Dirichlet forms (built from differential operators)
- Geometry: locality in index theory (the index of a differential operator).

#### Local functionals in QFT

Functionals F on fields  $\phi$  of the form  $F(\phi) = \int_M f(j_x^k(\phi)) dx$ , where  $j_x^k(\phi)$  is the *k*-th jet of  $\phi$  at *x*. Here,  $\text{Supp}(f(\psi)) \subset \text{Supp}(\psi)$ .

#### Locality also arises in

- Analysis: local operators (differential operators), local Dirichlet forms (built from differential operators)
- Geometry: locality in index theory (the index of a differential operator).

#### Link between various concepts of locality

 $\Psi_{phg}^{\Gamma}(M)$  polyhomog. pseudodiff. operators on M with order in  $\Gamma \subset \mathbb{C}$ : A linear form  $\Lambda : \Psi_{phg}^{\Gamma}(M) \longrightarrow \mathbb{C}$  with  $A \longmapsto \Lambda(A)$ , is local if and only if  $\operatorname{Supp}(\chi) \cap \operatorname{Supp}(\chi') = \emptyset \Longrightarrow \Lambda(\chi A \chi') = 0.$ 

#### Local functionals in QFT

Functionals F on fields  $\phi$  of the form  $F(\phi) = \int_M f(j_x^k(\phi)) dx$ , where  $j_x^k(\phi)$  is the *k*-th jet of  $\phi$  at *x*. Here,  $\text{Supp}(f(\psi)) \subset \text{Supp}(\psi)$ .

#### Locality also arises in

- Analysis: local operators (differential operators), local Dirichlet forms (built from differential operators)
- Geometry: locality in index theory (the index of a differential operator).

#### Link between various concepts of locality

 $\Psi_{phg}^{\Gamma}(M)$  polyhomog. pseudodiff. operators on M with order in  $\Gamma \subset \mathbb{C}$ : A linear form  $\Lambda : \Psi_{phg}^{\Gamma}(M) \longrightarrow \mathbb{C}$  with  $A \longmapsto \Lambda(A)$ , is local if and only if  $\operatorname{Supp}(\chi) \cap \operatorname{Supp}(\chi') = \emptyset \Longrightarrow \Lambda(\chi A \chi') = 0.$ 

## Definition of locality

## Definition of locality

A locality set is a couple  $(X, \top)$  where X is a set and  $\top \subseteq X \times X$  is a symmetric relation on X, called locality relation (or independence relation) of the locality set.

## Definition of locality

A locality set is a couple  $(X, \top)$  where X is a set and  $\top \subseteq X \times X$  is a symmetric relation on X, called locality relation (or independence relation) of the locality set.

 $x_1 \top x_2 \iff (x_1, x_2) \in \top, \quad \forall x_1, x_2 \in X.$ 

#### Definition of locality

A locality set is a couple  $(X, \top)$  where X is a set and  $\top \subseteq X \times X$  is a symmetric relation on X, called locality relation (or independence relation) of the locality set.

 $x_1 \top x_2 \iff (x_1, x_2) \in \top, \quad \forall x_1, x_2 \in X.$ 

First examples of locality

#### Definition of locality

A locality set is a couple  $(X, \top)$  where X is a set and  $\top \subseteq X \times X$  is a symmetric relation on X, called locality relation (or independence relation) of the locality set.

 $x_1 \top x_2 \iff (x_1, x_2) \in \top, \quad \forall x_1, x_2 \in X.$ 

#### First examples of locality

•  $X \top Y \iff X \cap Y = \emptyset$  on subsets X, Y of a set Z.

#### Definition of locality

A locality set is a couple  $(X, \top)$  where X is a set and  $\top \subseteq X \times X$  is a symmetric relation on X, called locality relation (or independence relation) of the locality set.

 $x_1 \top x_2 \iff (x_1, x_2) \in \top, \quad \forall x_1, x_2 \in X.$ 

#### First examples of locality

- $X \top Y \iff X \cap Y = \emptyset$  on subsets X, Y of a set Z.
- $X \top Y \iff X \bot Y$  on subsets X, Y of an euclidean vector space V.

## Definition of locality

A locality set is a couple  $(X, \top)$  where X is a set and  $\top \subseteq X \times X$  is a symmetric relation on X, called locality relation (or independence relation) of the locality set.

 $x_1 \top x_2 \iff (x_1, x_2) \in \top, \quad \forall x_1, x_2 \in X.$ 

#### First examples of locality

- $X \top Y \iff X \cap Y = \emptyset$  on subsets X, Y of a set Z.
- $X \top Y \iff X \bot Y$  on subsets X, Y of an euclidean vector space V.

#### (almost-)Separation of supports

Let  $U \subset \mathbb{R}^n$  be an open subset and  $\epsilon \ge 0$ . Two functions  $\phi, \psi \in \mathcal{D}(U)$  are independent i.e.,  $\phi \top \psi$  whenever  $d(\operatorname{Supp}(\phi), \operatorname{Supp}(\psi)) > \epsilon$ .

#### Definition of locality

A locality set is a couple  $(X, \top)$  where X is a set and  $\top \subseteq X \times X$  is a symmetric relation on X, called locality relation (or independence relation) of the locality set.

 $x_1 \top x_2 \iff (x_1, x_2) \in \top, \quad \forall x_1, x_2 \in X.$ 

#### First examples of locality

- $X \top Y \iff X \cap Y = \emptyset$  on subsets X, Y of a set Z.
- $X \top Y \iff X \bot Y$  on subsets X, Y of an euclidean vector space V.

#### (almost-)Separation of supports

Let  $U \subset \mathbb{R}^n$  be an open subset and  $\epsilon \geq 0$ . Two functions  $\phi, \psi \in \mathcal{D}(U)$  are independent i.e.,  $\phi \top \psi$  whenever  $d(\operatorname{Supp}(\phi), \operatorname{Supp}(\psi)) > \epsilon$ . For  $\epsilon = 0$ , this amounts to disjointness of supports, otherwise to  $\epsilon$ -separation of supports.

## **Further examples**

#### Probability theory: independence of events

Given a probability space  $\mathcal{P} := (\Omega, \Sigma, P)$  and two events  $A, B \in \Sigma$ :  $A \top B \iff P(A \cap B) = P(A) P(B).$ 

## **Further examples**

#### Probability theory: independence of events

Given a probability space  $\mathcal{P} := (\Omega, \Sigma, P)$  and two events  $A, B \in \Sigma$ :  $A \top B \iff P(A \cap B) = P(A) P(B).$ 

#### Geometry: transversal manifolds

Given two submanifolds  $L_1$  and  $L_2$  of a manifold M:  $L_1 \top L_2 \iff L_1 \pitchfork L_2 \iff T_x L_1 + T_x L_2 = T_x M \quad \forall x \in L_1 \cap L_2.$ 

## **Further examples**

#### Probability theory: independence of events

Given a probability space  $\mathcal{P} := (\Omega, \Sigma, P)$  and two events  $A, B \in \Sigma$ :  $A \top B \iff P(A \cap B) = P(A) P(B).$ 

#### Geometry: transversal manifolds

Given two submanifolds  $L_1$  and  $L_2$  of a manifold M:  $L_1 \top L_2 \iff L_1 \pitchfork L_2 \iff T_x L_1 + T_x L_2 = T_x M \quad \forall x \in L_1 \cap L_2.$ 

#### Number theory: coprime numbers

Given two positive integers m, n in  $\mathbb{N}$ :

 $m \top n \iff m \land n = 1.$ 

Operation on the graph of a locality relation

• Locality set:  $(X, \top)$ ,

## Operation on the graph of a locality relation

- Locality set:  $(X, \top)$ ,
- Graph:  $\top = \{(x_1, x_2) \in X^2, x_1 \top x_2\},\$

#### Operation on the graph of a locality relation

- Locality set:  $(X, \top)$ ,
- Graph:  $\top = \{(x_1, x_2) \in X^2, x_1 \top x_2\},\$
- Partial product:  $m_X : X \times X \supset \top \longrightarrow X$ .

## Operation on the graph of a locality relation

- Locality set:  $(X, \top)$ ,
- Graph:  $\top = \{(x_1, x_2) \in X^2, x_1 \top x_2\},\$
- Partial product:  $m_X : X \times X \supset \top \longrightarrow X$ .

## $(X, \top, m_X)$ locality semi-group

$$U^{\top} := \{ x \in \mathbf{X}, x \top u \quad \forall u \in U \} \text{ for } U \subseteq \mathbf{X}.$$

## Operation on the graph of a locality relation

- Locality set:  $(X, \top)$ ,
- Graph:  $\top = \{(x_1, x_2) \in X^2, x_1 \top x_2\},\$
- Partial product:  $m_X : X \times X \supset \top \longrightarrow X$ .

## $(X, \top, m_X)$ locality semi-group

 $U^{\top} := \{x \in X, x \top u \quad \forall u \in U\} \text{ for } U \subseteq X.$ Locality semi-group condition:  $\forall U \subseteq X, \quad m_X \left( (U^{\top} \times U^{\top}) \cap \top \right) \subseteq U^{\top}.$ 

## Operation on the graph of a locality relation

- Locality set:  $(X, \top)$ ,
- Graph:  $\top = \{(x_1, x_2) \in X^2, x_1 \top x_2\},\$
- Partial product:  $m_X : X \times X \supset \top \longrightarrow X$ .

## $(X, \top, m_X)$ locality semi-group

 $U^{\top} := \{x \in X, x \top u \quad \forall u \in U\} \text{ for } U \subseteq X.$ Locality semi-group condition:  $\forall U \subseteq X, \quad m_X \left( (U^{\top} \times U^{\top}) \cap \top \right) \subseteq U^{\top}.$ 

#### Counterexample

Equip  $\mathbb{R}$  with the locality relation  $x \top y \iff x + y \notin \mathbb{Z}$ . ( $\mathbb{R}, \top, +$ ) is NOT a locality semi-group: for  $U = \{1/3\}$  we have  $(1/3, 1/3) \in (U^{\top} \times U^{\top}) \cap \top$  but  $1/3 + 1/3 = 2/3 \notin U^{\top}$ .

## MULTIVARIATE GERMS

## Evaluating a fraction with a linear pole at zero

## Evaluating a fraction with a linear pole at zero

$$\frac{z_1 - z_2}{z_1 + z_2}|_{z_1 = 0, z_2 = 0} = \begin{cases} 1? \\ 0? \\ 10000? \end{cases}$$

## Evaluating a fraction with a linear pole at zero

$$\frac{z_1 - z_2}{z_1 + z_2}|_{z_1 = 0, z_2 = 0} = \begin{cases} 1?\\0?\\10000? \end{cases}$$

In our approach, a given choice of locality fixes the value 0.

Multivariate meromorphic germs with linear poles

• 
$$\mathcal{M}(\mathbb{C}^k) \ni f = \frac{h(\ell_1, \dots, \ell_n)}{L_1^{s_1} \cdots L_n^{s_n}}$$
, *h* holomorphic germ,  $s_i \in \mathbb{Z}_{\geq 0}$ ,

Multivariate meromorphic germs with linear poles

- $\mathcal{M}(\mathbb{C}^k) \ni f = \frac{h(\ell_1, \dots, \ell_n)}{L_1^{s_1} \cdots L_n^{s_n}}$ , *h* holomorphic germ,  $s_i \in \mathbb{Z}_{\geq 0}$ ,
- $\ell_i : \mathbb{C}^k \to \mathbb{C}, \ L_j : \mathbb{C}^k \to \mathbb{C}$  linear forms.

Multivariate meromorphic germs with linear poles

- $\mathcal{M}(\mathbb{C}^k) \ni f = \frac{h(\ell_1, \dots, \ell_n)}{L_1^{s_1} \cdots L_n^{s_n}}$ , *h* holomorphic germ,  $s_i \in \mathbb{Z}_{\geq 0}$ ,
- $\ell_i : \mathbb{C}^k \to \mathbb{C}, \ L_j : \mathbb{C}^k \to \mathbb{C}$  linear forms.
- Dependence set  $Dep(f) := \langle \ell_1, \cdots, \ell_m, L_1, \cdots, L_n \rangle$ .

Multivariate meromorphic germs with linear poles

- $\mathcal{M}(\mathbb{C}^k) \ni f = \frac{h(\ell_1, \dots, \ell_n)}{L_1^{s_1} \cdots L_n^{s_n}}$ , *h* holomorphic germ,  $s_i \in \mathbb{Z}_{\geq 0}$ ,
- $\ell_i : \mathbb{C}^k \to \mathbb{C}, \ L_j : \mathbb{C}^k \to \mathbb{C}$  linear forms.
- Dependence set  $Dep(f) := \langle \ell_1, \cdots, \ell_m, L_1, \cdots, L_n \rangle$ .

Locality: separation of variables

On  $\mathcal{M}(\mathbb{C}^{\infty}) = \bigcup_{k \in \mathbb{N}} \mathcal{M}(\mathbb{C}^k)$ ,  $f_1 \perp f_2 \iff \operatorname{Dep}(f_1) \perp \operatorname{Dep}(f_2)$ .

Multivariate meromorphic germs with linear poles

- $\mathcal{M}(\mathbb{C}^k) \ni f = \frac{h(\ell_1, \dots, \ell_n)}{L_1^{s_1} \cdots L_n^{s_n}}$ , *h* holomorphic germ,  $s_i \in \mathbb{Z}_{\geq 0}$ ,
- $\ell_i : \mathbb{C}^k \to \mathbb{C}, \ L_j : \mathbb{C}^k \to \mathbb{C}$  linear forms.
- Dependence set  $Dep(f) := \langle \ell_1, \cdots, \ell_m, L_1, \cdots, L_n \rangle$ .

#### Locality: separation of variables

On  $\mathcal{M}(\mathbb{C}^{\infty}) = \bigcup_{k \in \mathbb{N}} \mathcal{M}(\mathbb{C}^k)$ ,  $f_1 \perp f_2 \iff \operatorname{Dep}(f_1) \perp \operatorname{Dep}(f_2)$ .

#### Back to the brain teaser

$$\begin{split} \ell &:= z_1 \perp z_2 =: L \Longrightarrow \frac{z_1}{z_2} \in \mathcal{M}_-(\mathbb{C}^2) \\ (\ell &:= z_1 - z_2) \perp (z_1 + z_2 =: L) \Longrightarrow \frac{z_1 - z_2}{z_1 + z_2} \in \mathcal{M}_-(\mathbb{C}^2). \end{split}$$

# **Partial product** on multivariate meromorphic germs

# **Partial product** on multivariate meromorphic germs

The partial product on  $\mathcal{M}(\mathbb{C}^{\infty}) = \bigcup_{k \in \mathbb{N}} \mathcal{M}(\mathbb{C}^k)$ :

# **Partial product** on multivariate meromorphic germs

The partial product on  $\mathcal{M}(\mathbb{C}^{\infty}) = \bigcup_{k \in \mathbb{N}} \mathcal{M}(\mathbb{C}^{k})$ :  $\mathcal{M}(\mathbb{C}^{\infty}) \times \mathcal{M}(\mathbb{C}^{\infty}) \supset \top \longrightarrow \mathcal{M}(\mathbb{C}^{\infty})$  $\left(f = \frac{h(\vec{\ell})}{\vec{L}^{\vec{s}}}, \tilde{f} = \frac{\tilde{h}(\vec{\ell})}{\tilde{\vec{L}}^{\vec{s}}}\right) \longmapsto f \cdot \tilde{f} = \frac{h(\vec{\ell}) \cdot \tilde{h}(\vec{\ell})}{\vec{L}^{\vec{s}} \cdot \vec{\tilde{L}}^{\vec{s}}}.$ 

# **Partial product** on multivariate meromorphic germs

The partial product on  $\mathcal{M}(\mathbb{C}^{\infty}) = \bigcup_{k \in \mathbb{N}} \mathcal{M}(\mathbb{C}^k)$ :

$$\mathcal{M}(\mathbb{C}^{\infty}) \times \mathcal{M}(\mathbb{C}^{\infty}) \supset \top \longrightarrow \mathcal{M}(\mathbb{C}^{\infty})$$
$$\left(f = \frac{h(\vec{\ell})}{\vec{L}^{\vec{s}}}, \tilde{f} = \frac{\tilde{h}(\vec{\ell})}{\tilde{\vec{L}}^{\vec{s}}}\right) \longmapsto f \cdot \tilde{f} = \frac{h(\vec{\ell}) \cdot \tilde{h}(\vec{\ell})}{\vec{L}^{\vec{s}} \cdot \vec{\tilde{L}}^{\vec{s}}}$$

Back again to the brain teaser

$$z_1-z_2\perp \left(z_1+z_2\Longrightarrow \frac{z_1-z_2}{z_1+z_2}=z_1-z_2\cdot \frac{1}{z_1+z_2}\right)$$

Theorem (L. Guo, S.-P., B. Zhang/ N. Berline, M. Vergne 2015)  $\mathcal{M}(\mathbb{C}^k) = \mathcal{M}_{-}(\mathbb{C}^k) \oplus^{\perp} \mathcal{M}_{+}(\mathbb{C}^k), \text{ where } \mathcal{M}_{-}(\mathbb{C}^k) \ni \frac{h(\ell_1, \dots, \ell_n)}{L_1^{\mathbf{1}} \cdots L_n^{\mathbf{5}_n}} \text{ with}$   $\operatorname{Dep}(h) \perp \langle L_1, \dots, L_n \rangle \text{ and } f_1 \perp f_2 \iff \operatorname{Dep}(f_1) \perp \operatorname{Dep}(f_2).$ 

Theorem (L. Guo, S.-P., B. Zhang/ N. Berline, M. Vergne 2015)  $\mathcal{M}(\mathbb{C}^k) = \mathcal{M}_{-}(\mathbb{C}^k) \oplus^{\perp} \mathcal{M}_{+}(\mathbb{C}^k), \text{ where } \mathcal{M}_{-}(\mathbb{C}^k) \ni \frac{h(\ell_1, \cdots, \ell_n)}{L_1^{\mathfrak{s}_1} \cdots L_n^{\mathfrak{s}_n}} \text{ with}$   $\operatorname{Dep}(h) \perp \langle L_1, \cdots, L_n \rangle \text{ and } f_1 \perp f_2 \iff \operatorname{Dep}(f_1) \perp \operatorname{Dep}(f_2).$ 

#### Our protagonists

• Orthogonal projection  $\mathcal{M}(\mathbb{C}^k) \xrightarrow{\pi_+} \mathcal{M}_+(\mathbb{C}^k)$ .

Theorem (L. Guo, S.-P., B. Zhang/ N. Berline, M. Vergne 2015)  $\mathcal{M}(\mathbb{C}^k) = \mathcal{M}_{-}(\mathbb{C}^k) \oplus^{\perp} \mathcal{M}_{+}(\mathbb{C}^k), \text{ where } \mathcal{M}_{-}(\mathbb{C}^k) \ni \frac{h(\ell_1, \dots, \ell_n)}{L_1^{\mathbf{1}} \cdots L_n^{\mathbf{s}_n}} \text{ with}$   $\operatorname{Dep}(h) \perp \langle L_1, \cdots, L_n \rangle \text{ and } f_1 \perp f_2 \iff \operatorname{Dep}(f_1) \perp \operatorname{Dep}(f_2).$ 

#### Our protagonists

• Orthogonal projection  $\mathcal{M}(\mathbb{C}^k) \xrightarrow{\pi_1} \mathcal{M}_+(\mathbb{C}^k)$ .

• Evaluator 
$$\mathcal{M}_+(\mathbb{C}^k) \xrightarrow[ev_0]{ev_0} \mathbb{C}$$
.

Theorem (L. Guo, S.-P., B. Zhang/ N. Berline, M. Vergne 2015)  $\mathcal{M}(\mathbb{C}^k) = \mathcal{M}_{-}(\mathbb{C}^k) \oplus^{\perp} \mathcal{M}_{+}(\mathbb{C}^k), \text{ where } \mathcal{M}_{-}(\mathbb{C}^k) \ni \frac{h(\ell_1, \dots, \ell_n)}{L_1^{c_1} \cdots L_n^{c_n}} \text{ with}$   $\operatorname{Dep}(h) \perp \langle L_1, \dots, L_n \rangle \text{ and } f_1 \perp f_2 \iff \operatorname{Dep}(f_1) \perp \operatorname{Dep}(f_2).$ 

#### Our protagonists

- Orthogonal projection  $\mathcal{M}(\mathbb{C}^k) \xrightarrow{\pi_1} \mathcal{M}_+(\mathbb{C}^k)$ .
- Evaluator  $\mathcal{M}_+(\mathbb{C}^k) \xrightarrow[ev_0]{} \mathbb{C}$ .
- Regularised evaluator  $\operatorname{ev}_0^{\operatorname{reg}} : \mathcal{M}(\mathbb{C}^k) \xrightarrow[\pi_+]{} \mathcal{M}_+(\mathbb{C}^k) \xrightarrow[ev_0]{} \mathbb{C}$

$$f \longmapsto f^{\operatorname{reg}}(\mathbf{0}) := \operatorname{ev}_{\mathbf{0}}^{\operatorname{reg}}(f)$$

#### Multiplicativity of the regularised evaluator

The regularised evaluator is multiplicative on mutually independent germs:  $f_1 \perp f_2 \iff (f_1 \cdot f_2)^{\text{reg}}(0) = (f_1^{\text{reg}}(0)) (f_2^{\text{reg}}(0))$ .

#### Multiplicativity of the regularised evaluator

The regularised evaluator is multiplicative on mutually independent germs:  $f_1 \perp f_2 \iff (f_1 \cdot f_2)^{\text{reg}}(0) = (f_1^{\text{reg}}(0)) (f_2^{\text{reg}}(0))$ .

#### Back to the brain teaser

• 
$$\operatorname{ev_0}^{\operatorname{reg}}\left(\frac{z_1}{z_2}\right) = 0 \neq 1 = \operatorname{ev_0}^{\operatorname{reg}}\left(\left(\frac{z_1}{z_2}\right)|_{z_1=z_2=z}\right);$$

#### Multiplicativity of the regularised evaluator

The regularised evaluator is multiplicative on mutually independent germs:  $f_1 \perp f_2 \iff (f_1 \cdot f_2)^{\text{reg}}(0) = (f_1^{\text{reg}}(0)) (f_2^{\text{reg}}(0))$ .

#### Back to the brain teaser

• 
$$\operatorname{ev_0^{\operatorname{reg}}}\left(\frac{z_1}{z_2}\right) = 0 \neq 1 = \operatorname{ev_0^{\operatorname{reg}}}\left(\left(\frac{z_1}{z_2}\right)|_{z_1=z_2=z}\right);$$
  
•  $\left(\ell = z_1 - z_2\right) \perp (z_1 + z_2 = L) \Longrightarrow \operatorname{ev_0^{\operatorname{reg}}}\left(\frac{\ell(z_1, z_2)}{\ell(z_1, z_2)}\right)$   
 $= \operatorname{ev_0^{\operatorname{reg}}}\left(\ell(z_1, z_2)\right) \cdot \operatorname{ev_0^{\operatorname{reg}}}\left(\frac{1}{\ell(z_1, z_2)}\right) = 0.$ 

#### Multiplicativity of the regularised evaluator

The regularised evaluator is multiplicative on mutually independent germs:  $f_1 \perp f_2 \iff (f_1 \cdot f_2)^{\text{reg}}(0) = (f_1^{\text{reg}}(0)) (f_2^{\text{reg}}(0))$ .

#### Back to the brain teaser

• 
$$\operatorname{ev_0^{\operatorname{reg}}}\left(\frac{z_1}{z_2}\right) = 0 \neq 1 = \operatorname{ev_0^{\operatorname{reg}}}\left(\left(\frac{z_1}{z_2}\right)|_{z_1=z_2=z}\right);$$
  
•  $\left(\ell = z_1 - z_2\right) \perp (z_1 + z_2 = L) \Longrightarrow \operatorname{ev_0^{\operatorname{reg}}}\left(\frac{\ell(z_1, z_2)}{\ell(z_1, z_2)}\right)$   
 $= \operatorname{ev_0^{\operatorname{reg}}}\left(\ell(z_1, z_2)\right) \cdot \operatorname{ev_0^{\operatorname{reg}}}\left(\frac{1}{\ell(z_1, z_2)}\right) = 0.$ 



## RENORMALISATION and LOCALITY reconciled

#### Locality maps

 $\Phi: (X, \top_X) \longmapsto (Y, \top_Y)$  is a locality map if  $\Phi \otimes \Phi(\top_X) \subset \top_Y$ 

#### Locality maps

 $\Phi: (X, \top_X) \longmapsto (Y, \top_Y) \text{ is a locality map if } \Phi \otimes \Phi(\top_X) \subset \top_Y$ 

#### Locality morphisms

 $\Phi: (A, \top_A, m_A) \longmapsto (B, \top_B, m_B)$  is moreover a locality morphism of locality semi-groups if  $a_1 \top_A a_2 \Longrightarrow \Phi(m_A(a_1, a_2)) = m_B(\Phi(a_1), \Phi(a_2))$ .

#### Locality maps

 $\Phi: (X, \top_X) \longmapsto (Y, \top_Y) \text{ is a locality map if } \Phi \otimes \Phi(\top_X) \subset \top_Y$ 

#### Locality morphisms

 $\Phi: (A, \top_A, m_A) \longmapsto (B, \top_B, m_B)$  is moreover a locality morphism of locality semi-groups if  $a_1 \top_A a_2 \Longrightarrow \Phi(m_A(a_1, a_2)) = m_B(\Phi(a_1), \Phi(a_2))$ .

#### Example

- The orthogonal projection  $(\mathcal{M}(\mathbb{C}^{\infty}), \bot) \xrightarrow{\pi_+} (\mathcal{M}_+(\mathbb{C}^{\infty}), \bot)$  is
  - a locality morphism of locality semi-groups;

#### Locality maps

 $\Phi: (X, \top_X) \longmapsto (Y, \top_Y) \text{ is a locality map if } \Phi \otimes \Phi(\top_X) \subset \top_Y$ 

#### Locality morphisms

 $\Phi : (A, \top_A, m_A) \longmapsto (B, \top_B, m_B)$  is moreover a locality morphism of locality semi-groups if  $a_1 \top_A a_2 \Longrightarrow \Phi(m_A(a_1, a_2)) = m_B(\Phi(a_1), \Phi(a_2))$ .

#### Example

• The orthogonal projection  $(\mathcal{M}(\mathbb{C}^{\infty}), \bot) \xrightarrow[\pi_+]{} (\mathcal{M}_+(\mathbb{C}^{\infty}), \bot)$  is

a locality morphism of locality semi-groups;

• The regularised evaluator

 $ev_0^{reg} := ev_0 \circ \pi_+ : (\mathcal{M}(\mathbb{C}^\infty), \bot) \longrightarrow \mathbb{C}$  is a locality character.

Data: the multivariate framework

• a (commutative) locality algebra  $(\mathcal{A}, \top_{\mathcal{A}}, m_{\mathcal{A}})$ ,

#### Data: the multivariate framework

- a (commutative) locality algebra  $(A, \top_A, m_A)$ ,
- the algebra of multivariate meromorphic germs at zero  $(\mathcal{M}(\mathbb{C}^{\infty}), \bot, \cdot),$

#### Data: the multivariate framework

- a (commutative) locality algebra  $(A, \top_A, m_A)$ ,
- the algebra of multivariate meromorphic germs at zero  $(\mathcal{M}(\mathbb{C}^{\infty}), \bot, \cdot),$
- a locality morphism

 $\Phi: (\mathcal{A}, \top_{\mathcal{A}}, m_{\mathcal{A}}) \longrightarrow (\mathcal{M}(\mathbb{C}^{\infty}), \bot, \cdot).$ 

#### Data: the multivariate framework

- a (commutative) locality algebra  $(A, \top_A, m_A)$ ,
- the algebra of multivariate meromorphic germs at zero  $(\mathcal{M}(\mathbb{C}^{\infty}), \bot, \cdot),$
- a locality morphism

$$\Phi: (\mathcal{A}, \top_{\mathcal{A}}, m_{\mathcal{A}}) \longrightarrow (\mathcal{M}(\mathbb{C}^{\infty}), \bot, \cdot).$$

So  $\Phi$  is partially multiplicative:  $a_1 \top_A a_2 \Longrightarrow \Phi(m_A(a_1, a_2)) = \Phi(a_1) \cdot \Phi(a_2).$ 

#### Data: the multivariate framework

- a (commutative) locality algebra  $(A, T_A, m_A)$ ,
- the algebra of multivariate meromorphic germs at zero  $(\mathcal{M}(\mathbb{C}^{\infty}), \bot, \cdot),$
- a locality morphism

$$\Phi: (\mathcal{A}, \top_{\mathcal{A}}, m_{\mathcal{A}}) \longrightarrow (\mathcal{M}(\mathbb{C}^{\infty}), \bot, \cdot).$$

So  $\Phi$  is partially multiplicative:  $a_1 \top_A a_2 \Longrightarrow \Phi(m_A(a_1, a_2)) = \Phi(a_1) \cdot \Phi(a_2).$ 

#### Our task

Build a locality character  $\Phi^{\operatorname{reg}}$  :  $(\mathcal{A}, \top_{\mathcal{A}}, m_{\mathcal{A}}) \longrightarrow (\mathbb{C}, \cdot)$ 

$$a_1 \top_A a_2 \Longrightarrow \Phi^{\operatorname{reg}}(m_A(a_1, a_2)) = \Phi^{\operatorname{reg}}(a_1) \cdot \Phi^{\operatorname{reg}}(a_2).$$
 (1)

### The renormalised map is partially multiplicative

### The renormalised map is partially multiplicative

#### Back to our main protagonist

• The regularised evaluator  $ev_0^{\operatorname{reg}} := ev_0 \circ \pi_+ : (\mathcal{M}(\mathbb{C}^\infty), \bot) \longrightarrow \mathbb{C}$  is a locality character.

### The renormalised map is partially multiplicative

#### Back to our main protagonist

• The regularised evaluator  $ev_0^{reg} := ev_0 \circ \pi_+ : (\mathcal{M}(\mathbb{C}^{\infty}), \bot) \longrightarrow \mathbb{C}$  is a locality character.

#### Theorem

A locality morphism  $\Phi : (\mathcal{A}, \top) \longrightarrow (\mathcal{M}(\mathbb{C}^k), \bot)$  gives rise to a locality character

$$\Phi^{\operatorname{reg}} := ev_0^{\operatorname{reg}} \circ \Phi : (\mathcal{A}, \top) \longrightarrow \mathbb{C}.$$

#### Summary

A multivariate regularisation provides a renormalisation scheme which respects locality .

### The algebra $\mathcal{A}$

#### The algebra $\mathcal{A}$

 pointed convex cones C in ℝ<sup>∞</sup> equipped with the cartesian product (L. Guo, S.-P., B. Zhang 2017);

#### The algebra $\mathcal{A}$

- pointed convex cones C in R<sup>∞</sup> equipped with the cartesian product (L. Guo, S.-P., B. Zhang 2017);
- rooted forests F equipped with the concatenation product (P.Clavier, L. Guo, S.-P., B. Zhang 2018);

#### The algebra $\mathcal{A}$

- pointed convex cones C in R<sup>∞</sup> equipped with the cartesian product (L. Guo, S.-P., B. Zhang 2017);
- rooted forests F equipped with the concatenation product (P.Clavier, L. Guo, S.-P., B. Zhang 2018);
- Feynman graphs Γ on manifolds equipped with the concatenation product (N.-V. Dang, B. Zhang 2017).

#### The algebra $\mathcal{A}$

- pointed convex cones C in R<sup>∞</sup> equipped with the cartesian product (L. Guo, S.-P., B. Zhang 2017);
- rooted forests F equipped with the concatenation product (P.Clavier, L. Guo, S.-P., B. Zhang 2018);
- Feynman graphs Γ on manifolds equipped with the concatenation product (N.-V. Dang, B. Zhang 2017).

#### The map $\phi: \mathcal{A} \longrightarrow \mathcal{M}(\mathbb{C}^{\infty})$

• exponential integrals/sums on a cone C:  $\check{\mathbf{C}}^- \ni \vec{\epsilon} \longmapsto \int_{\vec{x} \in \mathbf{C}} e^{\langle \vec{\epsilon}, \vec{x} \rangle} dx$  and  $\check{\mathbf{C}}^- \ni \vec{\epsilon} \longmapsto \sum_{\vec{n} \in \mathbf{C} \cap \mathbb{Z}^{\infty}} e^{\langle \vec{\epsilon}, \vec{n} \rangle}$ ;

#### The algebra $\mathcal{A}$

- pointed convex cones C in R<sup>∞</sup> equipped with the cartesian product (L. Guo, S.-P., B. Zhang 2017);
- rooted forests F equipped with the concatenation product (P.Clavier, L. Guo, S.-P., B. Zhang 2018);
- Feynman graphs Γ on manifolds equipped with the concatenation product (N.-V. Dang, B. Zhang 2017).

#### The map $\phi: \mathcal{A} \longrightarrow \mathcal{M}(\mathbb{C}^{\infty})$

- exponential integrals/sums on a cone C:  $\check{\mathbf{C}}^- \ni \vec{\epsilon} \longmapsto \int_{\vec{x} \in \mathbf{C}} e^{\langle \vec{\epsilon}, \vec{x} \rangle} dx$  and  $\check{\mathbf{C}}^- \ni \vec{\epsilon} \longmapsto \sum_{\vec{n} \in \mathbf{C} \cap \mathbb{Z}^{\infty}} e^{\langle \vec{\epsilon}, \vec{n} \rangle}$ ;
- **a** branched zeta functions  $s_{\mathsf{F}} \mapsto \zeta_{\mathsf{F}}(s_{\mathsf{F}})$  indexed by forests  $\mathsf{F}$ ;

#### The algebra $\mathcal{A}$

- pointed convex cones C in R<sup>∞</sup> equipped with the cartesian product (L. Guo, S.-P., B. Zhang 2017);
- rooted forests F equipped with the concatenation product (P.Clavier, L. Guo, S.-P., B. Zhang 2018);
- Feynman graphs Γ on manifolds equipped with the concatenation product (N.-V. Dang, B. Zhang 2017).

#### The map $\phi: \mathcal{A} \longrightarrow \mathcal{M}(\mathbb{C}^{\infty})$

- exponential integrals/sums on a cone C:  $\check{\mathbf{C}}^- \ni \vec{\epsilon} \longmapsto \int_{\vec{x} \in \mathbf{C}} e^{\langle \vec{\epsilon}, \vec{x} \rangle} dx$  and  $\check{\mathbf{C}}^- \ni \vec{\epsilon} \longmapsto \sum_{\vec{n} \in \mathbf{C} \cap \mathbb{Z}^{\infty}} e^{\langle \vec{\epsilon}, \vec{n} \rangle}$ ;
- **2** branched zeta functions  $s_{\mathsf{F}} \mapsto \zeta_{\mathsf{F}}(s_{\mathsf{F}})$  indexed by forests  $\mathsf{F}$ ;
- Seynman amplitudes (z<sub>e</sub>, e ∈ 𝔅(Γ)) → Π<sub>e</sub> G(z<sub>e</sub>), with G(z<sub>e</sub>) the kernel of (Δ + m<sup>2</sup>)<sup>-1+z<sub>e</sub></sup>, on each edge e of the graph Γ.

### Conclusions

#### One can renormalise at poles while preserving locality

 Exponential integrals/sums on rational convex cones equipped with an orthogonality independence relation (L. Guo, S.-P., B. Zhang 2017);

### Conclusions

#### One can renormalise at poles while preserving locality

- Exponential integrals/sums on rational convex cones equipped with an orthogonality independence relation (L. Guo, S.-P., B. Zhang 2017);
- Branched zeta functions equipped with an orthogonality independence relation (P. Clavier, L. Guo, S.-P., B. Zhang 2018);

### Conclusions

#### One can renormalise at poles while preserving locality

- Exponential integrals/sums on rational convex cones equipped with an orthogonality independence relation (L. Guo, S.-P., B. Zhang 2017);
- Branched zeta functions equipped with an orthogonality independence relation (P. Clavier, L. Guo, S.-P., B. Zhang 2018);
- Feynman integrals on manifolds with a disjointness independence relation (N.-V. Dang, B. Zhang 2017).

#### Univariate versus univariate

Can a univariate locality renormalisation scheme  $\phi : (\mathcal{A}, m_A, \Delta) \longrightarrow (\mathcal{M}(\mathbb{C}), \cdot)$  factorise through a multivariate scheme? Does there exist

#### Univariate versus univariate

Can a univariate locality renormalisation scheme  $\phi : (\mathcal{A}, m_A, \Delta) \longrightarrow (\mathcal{M}(\mathbb{C}), \cdot)$  factorise through a multivariate scheme? Does there exist

• 
$$\Phi: (\mathcal{A}, m_{\mathcal{A}}, \top_{\Delta}) \longrightarrow (\mathcal{M}(\mathbb{C}^{\infty}), \cdot)$$
 and

#### Univariate versus univariate

Can a univariate locality renormalisation scheme  $\phi : (\mathcal{A}, m_A, \Delta) \longrightarrow (\mathcal{M}(\mathbb{C}), \cdot)$  factorise through a multivariate scheme? Does there exist

- $\Phi: (\mathcal{A}, m_{\mathcal{A}}, \top_{\Delta}) \longrightarrow (\mathcal{M}(\mathbb{C}^{\infty}), \cdot)$  and
- $\eta : \operatorname{Im}(\Phi) \longrightarrow \mathcal{M}(\mathbb{C})$

such that  $\phi = \eta \circ \Phi$ .

#### Univariate versus univariate

Can a univariate locality renormalisation scheme  $\phi : (\mathcal{A}, m_A, \Delta) \longrightarrow (\mathcal{M}(\mathbb{C}), \cdot)$  factorise through a multivariate scheme? Does there exist

- $\Phi: (\mathcal{A}, m_{\mathcal{A}}, \top_{\Delta}) \longrightarrow (\mathcal{M}(\mathbb{C}^{\infty}), \cdot)$  and
- $\eta : \operatorname{Im}(\Phi) \longrightarrow \mathcal{M}(\mathbb{C})$

such that  $\phi = \eta \circ \Phi$ .

#### Group actions

• Group G acting on  $\mathcal{A}$  which induces an action on  $\Phi(\mathcal{A}) \subset \mathcal{M}(\mathbb{C}^{\infty})$ 

#### Univariate versus univariate

Can a univariate locality renormalisation scheme  $\phi : (\mathcal{A}, m_A, \Delta) \longrightarrow (\mathcal{M}(\mathbb{C}), \cdot)$  factorise through a multivariate scheme? Does there exist

- $\Phi: (\mathcal{A}, m_{\mathcal{A}}, \top_{\Delta}) \longrightarrow (\mathcal{M}(\mathbb{C}^{\infty}), \cdot)$  and
- $\eta : \operatorname{Im}(\Phi) \longrightarrow \mathcal{M}(\mathbb{C})$

such that  $\phi = \eta \circ \Phi$ .

#### Group actions

- Group G acting on  $\mathcal{A}$  which induces an action on  $\Phi(\mathcal{A}) \subset \mathcal{M}(\mathbb{C}^{\infty})$
- How does it act on  $\Phi^{\operatorname{reg}}(\mathcal{A})$  ?

- P. Clavier, L. Guo, B. Zhang and S. P., An algebraic formulation of the locality principle in renormalisation, to appear in *European Journal of Mathematics*.
- L. Guo, B. Zhang and S.P., Renormalisation and the Euler-Maclaurin formula on cones, *Duke Math J.*, **166** (3) (2017) 537–571.
- L. Guo, B. Zhang and S. P., A conical approach to Laurent expansions for multivariate meromorphic germs with linear poles, arXiv:1501.00426v2 (2017).
- D. Manchon and S. P., Nested Sums of Symbols and Renormalized Multiple Zeta Values, Int. Math. Res. Notices (2010) 4628-4697. ArXiv: 0702135v3 [math.NT].

**To appear** (with P. Clavier, L. Guo and B. Zhang):

- Renormalisation via locality morphisms.
- Renormalisation and locality: branched zeta values.