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Locality and renormalisation

Divergent sums and integrals

Occurence of singularities/ divergences

at s = 1 in the Riemann ζ-function ζ(s) :=
∑∞

k=1 k
−s ;

at ∞ in the ill-defined Feynman integral
”
∫
R4

1
|k|2+m2 dk = Vol(S3)

∫∞
0

r3

r2+m2 dr”.

Extracting divergences

ζ-function: ζ(s)− 1
s − 1︸ ︷︷ ︸

counterterm

= γ+O(|s− 1|) −→
s→1

γ =: ζreg(1)

Feynman integrals:
∫ R
0

r3

r2+m2 dr −
(
R2

2
+ m2 logR

)
︸ ︷︷ ︸

counterterm

−→
R→∞

m2 logm =:
∞
−
∫
0

r3

r2+m2 dr .
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Locality and renormalisation

Higher order singularities/ divergences

Divergent products of sums and integrals

(ζ(s))2 − counterterms ?−→
s→1

ζreg(1)2 = γ2;

(∫ R

0
r3

r2+m2 dr
)2
− counterterms ?−→

R→∞

(∞
−
∫
0

r3

r2+m2 dr

)2

.

Divergent counterterms might combine with convergent terms to
contribute to finite terms.

Sums and integrals associated with higher algebraic structures
multiple integrals associated with Feynman diagrams.
multizeta functions (nested sums) that generalise to

conical zeta functions associated with cones;
branched zeta functions associated with trees.
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Locality and renormalisation

Dealing with higher divergences 1

A first naive approach

f i (z) = aiz
−1 + hi (z) ∈M, the set of meromorphic germs in one

variable with a simple pole at zero;

Subtract the pole and evaluate the holomorphic part at the zero

pole: f reg
i (0) = lim

z→0

f i (z)− ai z
−1︸ ︷︷ ︸

counterterms

 := hi (0).

Loss of multiplicativity : (f 1(z) f 2(z)− counterterms) −→
z→0

(f 1 f 2)reg (0) :=
f reg

1 (0) f reg
2 (0) + a1 · h′2(0) + a2 · h′1(0)︸ ︷︷ ︸

extra terms

6= f reg
1 (0) f reg

2 (0).

Example(
f 1(z) = z ∧ f 2(z) = 1

z

)
=⇒ f reg

1 (0) f reg
2 (0) = 0 6= 1 = (f1 f2)reg (0).
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Locality and renormalisation

Dealing with higher divergences 2

Alternative approach: a multivariate point of view

multivariate meromorphic germ:
f1(z1) f2(z2) =

a1 a2

z1 z2
+ a1 h

′
2(0)

z2
z1

+ a2 h
′
1(0)

z1
z2︸ ︷︷ ︸

counterterms

+h1(z1) h2(z2);

independence/ locality/ orthogonality relation: 1
z1
⊥ z2; 1

z2
⊥ z1;

(f1(z1) f2(z2)− counterterms) −→
zi→0

h1(0) h2(0) =: (f1 f1)reg (0).

Partial multiplicativity in a locality set up (yet to be defined)
Multiplicativity holds for independent functions:

f1⊥ f2 =⇒ f1
reg(0) f2

reg(0) = (f1 f2)reg (0).
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Locality and renormalisation

Why want to reconcile locality and renormalisation?

Because we want to

evaluate Feynman integrals in quantum field theory,
evaluate multizeta functions at poles and their
generalisations higher zeta functions,

count integer points on cones and evaluate conical zeta
functions at poles,
evaluate branched zeta functions associated with trees.

while preserving locality / multiplicativity.
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Locality and renormalisation

A first univariate approach

The data

a (commutative) algebra (A,mA),

the algebra of univariate meromorphic germs at zero (M(C), ·),

a morphism φ : (A,mA) −→ (M(C), ·) : φ(a1 a2) = φ(a1)φ(a2).

Aim
Build a character φren : (A,mA) −→ (C, ·) .

A first naive approach
Use the regularised evaluation to build φreg := ev0

reg ◦ φ. Yet the
"multiplicativity" (and hence the locality ) is spoiled:

φreg(a1 a2)6=φreg(a1)φreg(a2).
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Locality and renormalisation

The coproduct used to circumvent the
obstacles

The data

A graded algebra A = ⊕∞n=0An and a target algebra (B,mB).

A coproduct ∆A on A and a related convolution product
φ1 ? φ2 := mB ◦ (φ1 ⊗ φ2) ◦∆A of maps φi : (A,mA) −→ (B,mB).

The role of the coproduct: Birkhoff-Hopf factorisation [CK] 98’

The coproduct is used to undo "fake" finite terms arising from
hidden subdivergences: φ = φ−

?−1 ? φ+.

Forest formula [BPHZ] 57-68
The renormalised map φren := ev0 ◦ φ+ is multiplicative:

φren(a1 a2)=φren(a1)φren(a2).
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A third multivariate approach
(with P. Clavier, L. Guo and B. Zhang)

using algebraic locality



Locality and renormalisation

Locality in quantum field theory

Independence of events in QFT
An object is only directly influenced by its immediate surroundings. Two
events situated in different locations do not influence each other.

Independence of measurements
ObservableO −→ Measurement 〈O〉 ∈ C

O1 andO2︸ ︷︷ ︸
independent

=⇒︸︷︷︸
locality

〈O1?O2〉 = 〈O1〉〈O2〉︸ ︷︷ ︸
multiplicativity

.

Analogy: separation of variables (n = n1 + n2)

∫
Rn f 1(x1) f 2(x2) dx1 dx2︸ ︷︷ ︸
x1 and x2 independent

=

(∫
Rn1 f 1(x1) dx1

)
·
(∫

Rn2 f 2(x2) dx2

)
︸ ︷︷ ︸

multiplicativity

.
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Locality and renormalisation

A localitymultivariate setup

Our plan
We want to swap

the coproduct on the source space A for a locality relation on the
target spaceM: ∆A  >M;

univariate for multivariate meromorphic functions:
M(C) M(C∞);

Birkhoff-Hopf factorisation for a (naive) multivariate projection
φ+  π+ ◦ φ.

What for?

It naturally encompasses the locality principle;

Its universality: renormalisation π+ takes place on the target space
M(C∞) common to various problems.
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Locality and renormalisation

Locality cont’d.

Local functionals in QFT
Functionals F on fields φ of the form F (φ) =

∫
M
f
(
jkx (φ)

)
dx , where

jkx (φ) is the k-th jet of φ at x . Here, Supp (f (ψ)) ⊂ Supp (ψ) .

Locality also arises in

Analysis: local operators (differential operators), local Dirichlet
forms (built from differential operators)

Geometry: locality in index theory (the index of a differential
operator).

Link between various concepts of locality

ΨΓ
phg(M) polyhomog. pseudodiff. operators on M with order in Γ ⊂ C:

A linear form Λ : ΨΓ
phg(M) −→ C with A 7−→ Λ(A), is local if and only if

Supp(χ)∩Supp(χ′) = ∅ =⇒ Λ(χAχ′) = 0.
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Locality and renormalisation

Algebraic locality

Definition of locality

A locality set is a couple (X ,>) where X is a set and > ⊆ X × X is a
symmetric relation on X , called locality relation (or independence
relation) of the locality set.

x1>x2 ⇐⇒ (x1, x2) ∈ >, ∀x1, x2 ∈ X .

First examples of locality

X>Y ⇐⇒ X∩Y = ∅ on subsets X ,Y of a set Z .

X>Y ⇐⇒ X⊥Y on subsets X ,Y of an euclidean vector space V .

(almost-)Separation of supports

Let U ⊂ Rn be an open subset and ε ≥ 0. Two functions φ, ψ ∈ D(U)
are independent i.e., φ>ψ whenever d (Supp(φ), Supp(ψ)) >ε.

For ε = 0, this amounts to disjointness of supports, otherwise to
ε-separation of supports.
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Further examples

Probability theory: independence of events
Given a probability space P := (Ω,Σ,P) and two events A,B ∈ Σ:

A>B ⇐⇒ P(A∩B) = P(A)P(B).

Geometry: transversal manifolds
Given two submanifolds L1 and L2 of a manifold M:
L1> L2 ⇐⇒ L1 t L2 ⇐⇒ TxL1 +TxL2 = TxM ∀x ∈ L1 ∩ L2.

Number theory: coprime numbers
Given two positive integers m, n in N:

m> n⇐⇒ m∧ n = 1.
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Locality and renormalisation

Partial products

Operation on the graph of a locality relation

Locality set: (X ,>),

Graph: > = {(x1, x2) ∈ X 2, x1> x2},

Partial product: mX : X × X ⊃ > −→ X .

(X ,>,mX ) locality semi-group

U> := {x ∈ X , x > u ∀u ∈ U} for U ⊆ X .
Locality semi-group condition: ∀U ⊆ X , mX

(
(U> × U>) ∩ >

)
⊆ U>.

Counterexample
Equip R with the locality relation x > y ⇐⇒ x + y 6∈Z.
(R,>,+) is NOT a locality semi-group: for U = {1/3} we have
(1/3, 1/3) ∈ (U> × U>) ∩ > but 1/3+1/3 = 2/3/∈U>.
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MULTIVARIATE GERMS



Locality and renormalisation

Brain teaser 2

Evaluating a fraction with a linear pole at zero

z1 − z2
z1 + z2

|z1=0,z2=0 =


1 ?
0 ?

10000 ?

In our approach, a given choice of locality fixes the value 0.
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Locality and renormalisation

Independent multivariate meromorphic germs

Multivariate meromorphic germs with linear poles

M(Ck) 3 f = h(`1,··· ,`n)

L
s1
1 ···L

sn
n

, h holomorphic germ, si ∈ Z≥0,

`i : Ck → C, Lj : Ck → C linear forms.

Dependence set Dep(f ) := 〈`1, · · · , `m, L1, · · · , Ln〉.

Locality: separation of variables

OnM(C∞) =
⋃

k∈NM(Ck) , f1⊥ f2 ⇐⇒ Dep(f1)⊥Dep(f2).

Back to the brain teaser
` := z1⊥ z2 =: L =⇒ z1

z2
∈M−(C2)

(` := z1 − z2) ⊥ (z1 + z2 =: L) =⇒ z1−z2
z1+z2

∈M−(C2).
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Locality and renormalisation

Partial product on multivariate meromorphic
germs

The partial product onM(C∞) =
⋃

k∈NM(Ck):

M(C∞)×M(C∞) ⊃ > −→ M(C∞)f =
h(~̀)

~L~s
, f̃ =

h̃(
~̃
`)

~̃L
~̃s

 7−→ f · f̃ =
h(~̀) · h̃(

~̃
`)

~L~s · ~̃L
~̃s

.

Back again to the brain teaser

z1 − z2⊥
(
z1 + z2 =⇒ z1−z2

z1+z2
= z1 − z2 · 1

z1+z2
.



Locality and renormalisation

Partial product on multivariate meromorphic
germs

The partial product onM(C∞) =
⋃

k∈NM(Ck):

M(C∞)×M(C∞) ⊃ > −→ M(C∞)f =
h(~̀)

~L~s
, f̃ =

h̃(
~̃
`)

~̃L
~̃s

 7−→ f · f̃ =
h(~̀) · h̃(

~̃
`)

~L~s · ~̃L
~̃s

.

Back again to the brain teaser

z1 − z2⊥
(
z1 + z2 =⇒ z1−z2

z1+z2
= z1 − z2 · 1

z1+z2
.



Locality and renormalisation

Partial product on multivariate meromorphic
germs

The partial product onM(C∞) =
⋃

k∈NM(Ck):

M(C∞)×M(C∞) ⊃ > −→ M(C∞)f =
h(~̀)

~L~s
, f̃ =

h̃(
~̃
`)

~̃L
~̃s

 7−→ f · f̃ =
h(~̀) · h̃(

~̃
`)

~L~s · ~̃L
~̃s

.

Back again to the brain teaser

z1 − z2⊥
(
z1 + z2 =⇒ z1−z2

z1+z2
= z1 − z2 · 1

z1+z2
.



Locality and renormalisation

Partial product on multivariate meromorphic
germs

The partial product onM(C∞) =
⋃

k∈NM(Ck):

M(C∞)×M(C∞) ⊃ > −→ M(C∞)f =
h(~̀)

~L~s
, f̃ =

h̃(
~̃
`)

~̃L
~̃s

 7−→ f · f̃ =
h(~̀) · h̃(

~̃
`)

~L~s · ~̃L
~̃s

.

Back again to the brain teaser

z1 − z2⊥
(
z1 + z2 =⇒ z1−z2

z1+z2
= z1 − z2 · 1

z1+z2
.



Locality and renormalisation

Multivariate decomposition theorem

Theorem (L. Guo, S.-P., B. Zhang/ N. Berline, M. Vergne 2015 )

M(Ck) =M−(Ck)⊕⊥M+(Ck), whereM−(Ck) 3 h(`1,··· ,`n)

L
s1
1 ···L

sn
n

with
Dep(h)⊥〈L1, · · · , Ln〉 and f1⊥f2 ⇐⇒ Dep(f1)⊥Dep(f2).

Our protagonists

Orthogonal projectionM(Ck) −→
π+

M+(Ck).

EvaluatorM+(Ck) −→
ev0

C.

Regularised evaluator ev0
reg :M(Ck) −→

π+

M+(Ck) −→
ev0

C

f 7−→ f reg(0) := ev0
reg(f )
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Locality and renormalisation

The regularised evaluator

Multiplicativity of the regularised evaluator
The regularised evaluator is multiplicative on mutually independent
germs: f1⊥f2 ⇐⇒ (f1 · f2)reg (0) = (f1

reg(0)) (f2
reg(0)) .

Back to the brain teaser

ev0
reg
(

z1
z2

)
= 0 6= 1 = ev0

reg
((

z1
z2

)
|z1=z2=z

)
;

(` = z1 − z2) ⊥ (z1 + z2 = L) =⇒ ev0
reg
(
`(z1,z2)
L(z1,z2)

)
= ev0

reg (`(z1, z2)) · ev0
reg
(

1
L(z1,z2)

)
= 0.
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Locality and renormalisation

Locality morphisms

Locality maps
Φ : (X ,>X ) 7−→ (Y ,>Y ) is a locality map if Φ⊗ Φ(>X ) ⊂ >Y

Locality morphisms
Φ : (A,>A,mA) 7−→ (B,>B ,mB) is moreover a locality morphism of
locality semi-groups if a1>A a2 =⇒ Φ(mA(a1, a2)) = mB(Φ(a1),Φ(a2)).

Example

The orthogonal projection (M(C∞),⊥) −→
π+

(M+(C∞),⊥) is

a locality morphism of locality semi-groups;
The regularised evaluator
ev0

reg := ev0 ◦ π+ : (M(C∞),⊥) −→ C is a locality
character.
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Renormalised morphisms

Data: the multivariate framework

a (commutative) locality algebra (A,>A,mA),

the algebra of multivariate meromorphic germs at zero
(M(C∞),⊥, ·),

a locality morphism

Φ : (A,>A,mA) −→ (M(C∞),⊥, ·) .

So Φ is partially multiplicative:
a1>A a2 =⇒ Φ (mA(a1, a2)) = Φ(a1) ·Φ(a2).

Our task
Build a locality character Φreg : (A,>A,mA) −→ (C, ·)

a1>A a2 =⇒ Φreg (mA(a1, a2)) = Φreg(a1) ·Φreg(a2). (1)
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Locality and renormalisation

The renormalised map is partially multiplicative

Back to our main protagonist
The regularised evaluator
ev0

reg := ev0 ◦ π+ : (M(C∞),⊥) −→ C is a locality
character.

Theorem

A locality morphism Φ : (A,>) −→
(
M(Ck),⊥

)
gives rise to a

locality character

Φreg := ev0
reg ◦ Φ : (A,>) −→ C.

’
Summary
A multivariate regularisation provides a renormalisation scheme
which respects locality .
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Locality and renormalisation

Applications

The algebra A

1 pointed convex cones C in R∞ equipped with the cartesian product
(L. Guo, S.-P., B. Zhang 2017);

2 rooted forests F equipped with the concatenation product
(P.Clavier, L. Guo, S.-P., B. Zhang 2018);

3 Feynman graphs Γ on manifolds equipped with the concatenation
product (N.-V. Dang, B. Zhang 2017).

The map φ : A −→M(C∞)

1 exponential integrals/sums on a cone C:
Č− 3 ~ε 7−→

∫
~x∈C e〈~ε,~x〉 dx and Č− 3 ~ε 7−→

∑
~n∈C∩Z∞ e〈~ε,~n〉;

2 branched zeta functions sF 7−→ ζF(sF) indexed by forests F;

3 Feynman amplitudes (ze , e ∈ E(Γ)) 7−→
∏

e G (ze), with G (ze) the
kernel of (∆ + m2)−1+ze , on each edge e of the graph Γ.
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Locality and renormalisation

Conclusions

One can renormalise at poles while preserving locality

1 Exponential integrals/sums on rational convex cones equipped with
an orthogonality independence relation (L. Guo, S.-P., B. Zhang
2017);

2 Branched zeta functions equipped with an orthogonality
independence relation (P. Clavier, L. Guo, S.-P., B. Zhang 2018);

3 Feynman integrals on manifolds with a disjointness independence
relation (N.-V. Dang, B. Zhang 2017).
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Locality and renormalisation

Open questions

Univariate versus univariate
Can a univariate locality renormalisation scheme
φ : (A,mA,∆) −→ (M(C), ·) factorise through a multivariate
scheme? Does there exist

Φ : (A,mA,>∆) −→ (M(C∞), ·) and
η : Im(Φ) −→M(C)

such that φ = η ◦ Φ.

Group actions
Group G acting on A which induces an action on
Φ(A) ⊂M(C∞)

How does it act on Φreg(A) ?
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