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Multiplicativity holds for independent functions:

f L= A"5(0) £"#(0) = ( )™ (0).
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An object is only directly influenced by its immediate surroundings. Two
events situated in different locations do not influence each other.

Observable © — Measurement (O) € C

O1and O = (01%02) = (01)(02) .

independent locality
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of variables (n = ny + ny)

/ il ) el b b — ( / an F1(x1) dx1> . ( / s F2(30) dX2> .

x1 and xz independent multiplicativity
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X1 X <= (x1,%) € T, Vxi,x € X.

@ XY <= XY =0 on subsets X, Y of a set Z.

@ XY < X LY on subsets X, Y of an euclidean vector space V.
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Let U C R" be an open subset and € > 0. Two functions ¢, € D(U)
are independent i.e., ¢ I ¢ whenever d (Supp(¢), Supp(s)) > €
For ¢ = 0, this amounts to disjointness of supports, otherwise to

e-separation of supports.
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AT B <= P(A B) = P(A) P(B).

y

Given two submanifolds L; and Ly of a manifold M:
Li Tl Limly<= T,L1 + T,lb = T,M VxelinL,.

Given two positive integers m, n in N:
mlin< m/n=1.
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@ Partial product: mx : X x X D> T — X.

(X, T, mx) semi-group

U ={xeX,xTu Yue U} forUCX.
Locality semi-group condition: VU C X, mx ((U' xU")nT)CU".
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Counterexample

Equip R with the locality relation x T y <= x + yZZ.
(R, T,4) is NOT a locality semi-group: for U = {1/3} we have
(1/3,1/3)e (U x U )N | but 1/3+1/3=2/3¢U".
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In our approach, a given choice of locality fixes the value 0.
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The partial product on M(C>®) = [J, ey M(C*):
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Back again to the

_ -7 _ _
4| z L (Zl i ) = T Z1 >
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Theorem (L. Guo, S.-P., B. Zhang/ N. Berline, M. Vergne 2015 )

M(CK) = M_(CK)&" M, (CK), where M_(CK) 3 ”“—L with
Dep(h) | (Ly,---,L,) and i | f <= Dep(fl)LDep(fz)

.

@ Orthogonal projection M(CK) — M (C¥).

@ Evaluator M (CK) — C.

evo

@ Regularised evaluator ev(™® : M(CK) e M4 (CK) —C

evo

f—s F7°(0) = evo™®&(f)
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@ evp'®® (%) =0 # l=evg™® ((%) |Z1:zz:z);
@ ({=21—2) L (n+2=L)= evy™ (_ﬁzzi)

= evo™® ({(z1, 22)) - evo™® (@) =0.
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Example
@ The orthogonal projection (M (C>), 1) — (M (C™®), L) is
T

a locality morphism of locality semi-groups;

@ The regularised evaluator
ev'®8 1= evgomy : (M(C*), L) — Cis a locality
character.
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Data: the framework

@ a (commutative) locality algebra (A, T 4, ma),

@ the algebra of multivariate meromorphic germs at zero
(M(Coo)v 1, ')'

@ a locality morphism

O (A, Ta,ma) — (M(C®), 1,-).

So & is partially multiplicative:
a1 [ aa = ®(ma(ay, a2)) = ®(a1) - ¢(a2).

Build a locality character ™€ : (A, T 4, ma) — (C, )

ay [ nay = ®"® (ma(a1, a2)) = ®™*8(a1) - "°%(a2). (1)
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Back to our main protagonist

o The regularised evaluator
evo'8 :=evgomy : (M(C*), L) — Cis a locality
character.

v
Theorem

A locality morphism & : (A, 7)) — (M((Ck), ) gives rise to a
locality character

O =evy™®od: (A T) —C.

A multivariate regularisation provides a renormalisation scheme
which respects locality .
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@ pointed convex cones C in R* equipped with the cartesian product
(L. Guo, S.-P., B. Zhang 2017);

@ rooted forests F equipped with the concatenation product
(P.Clavier, L. Guo, S.-P., B. Zhang 2018);

© Feynman graphs I' on manifolds equipped with the concatenation
product (N.-V. Dang, B. Zhang 2017).

The map¢p: — M( )

Q exponential mtegrals/sums on a cone C:
C>é— f ec & elé® dx and €~ 3 &—> D i e

@ branched zeta functions sg — (¢(sg) indexed by forests F;

© Feynman amplitudes (z.,e € £(I')) — [], G(z.), with G(z.) the
kernel of (A + m?)~1%% on each edge e of the graph I".
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One can at poles while preserving

@ Exponential integrals/sums on rational convex cones equipped with
an orthogonality independence relation (L. Guo, S.-P., B. Zhang
2017);

@ Branched zeta functions equipped with an orthogonality
independence relation (P. Clavier, L. Guo, S.-P., B. Zhang 2018);

© Feynman integrals on manifolds with a disjointness independence
relation (N.-V. Dang, B. Zhang 2017).
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questions

VErsus

Can a univariate locality renormalisation scheme
¢: (A, ma, AN) — (M(C),-) factorise through a multivariate
scheme? Does there exist

o ®: (A ma, ) — (M(C>),-) and
o 7 : Im(®) — M(C)
such that ¢ =no ®.

4
actions

@ Group G acting on A which induces an action on
d(A) € M(C=)
o How does it act on ®*8(A) ?
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