Coherent states on some new fuzzy spheres

Gaetano Fiore, Francesco Pisacane Università degli Studi di Napoli "Federico II"
\& INFN - Sezione di Napoli

Final QSPACE Workshop IV, Bratislava

13 February 2019

Introduction

We have recently [Ref. below] introduced

- a fully $O(2)$-covariant fuzzy circle $\left\{S_{\Lambda}^{1}\right\}_{\Lambda \in \mathbb{N}}$,
- a fully $O(3)$-covariant fuzzy 2 -sphere $\left\{S_{\Lambda}^{2}\right\}_{\Lambda \in \mathbb{N}}$.

We resp. start from a quantum particle in $\mathbb{R}^{2}, \mathbb{R}^{3} u$ a confining potential $V(r)$ with a very sharp minimum on the sphere of radius $r=1$ and impose a suitable energy cutoff; cutoff and sharpness $V^{\prime \prime}(1)=: 4 k$ of the potential well parametrized by (and diverge with) \wedge.
$1^{\text {st }}$ motivation: alg. rel. covariant also under $x_{i} \mapsto-x_{i}(\neq$ Madore $)$.
Here I wish to report on some further investigations about the geometry of these S_{Λ}^{d} :
Coherent States (CS);
Spectrum of the space coordinate operators x_{i}.
G.Fiore, F. Pisacane, J. Geom. Phys. 132 (2018), 423-451,
G.Fiore, F.Pisacane, PoS(CORFU2017)184

Table of contents

1. Introduction
2. Our fuzzy spaces - The essentials
3. CS - Preliminaries; Perelomov \& Madore
4. Coherent states - Our targets
5. Our fuzzy spaces - The x^{i}-eigenvalue problem
6. Our fuzzy spaces - Most localized states
7. Comparison with Perelomov \& Madore
8. Comparison with literature

O(2)-equivariant fuzzy circle - The essentials
We previously constructed the O (2)-equivariant fuzzy circle $\left\{\mathcal{A}_{\Lambda, 2}\right\}_{\Lambda \in \mathbb{N}}$, it is a sequence of unitary irreducible representations $\left(\pi_{\Lambda, 2}, \mathcal{H}_{\Lambda, 2}\right)$ of $U s o(3)$ and every $\mathcal{A}_{\Lambda, 2}$ acts on the corresponding Hibert space

$$
\mathcal{H}_{\Lambda, 2}:=\operatorname{span}\left\{\psi_{m} \mid m \in \mathbb{Z},-\Lambda \leq m \leq \Lambda\right\} .
$$

O(2)-equivariant fuzzy circle - The essentials
We previously constructed the $O(2)$-equivariant fuzzy circle $\left\{\mathcal{A}_{\Lambda, 2}\right\}_{\Lambda \in \mathbb{N}}$, it is a sequence of unitary irreducible representations $\left(\pi_{\Lambda, 2}, \mathcal{H}_{\Lambda, 2}\right)$ of $U s o(3)$ and every $\mathcal{A}_{\Lambda, 2}$ acts on the corresponding Hilbert space

$$
\mathcal{H}_{\Lambda, 2}:=\operatorname{span}\left\{\psi_{m} \mid m \in \mathbb{Z},-\Lambda \leq m \leq \Lambda\right\} .
$$

The noncommutative coordinates $x_{+}:=\frac{x_{1}+i x_{2}}{\sqrt{2}}$ and $x_{-}:=\frac{x_{1}-i x_{2}}{\sqrt{2}}$ generate the $*$-algebra $\mathcal{A}_{\Lambda, 2}$ and their actions read

$$
\begin{aligned}
& x_{+} \psi_{m}= \begin{cases}\frac{b_{m+1}}{\sqrt{2}} \psi_{m+1} & \text { if }-\Lambda \leq m \leq \Lambda-1 \\
0 & \text { otherwise, }\end{cases} \\
& x_{-} \psi_{m}= \begin{cases}\frac{b_{m}}{\sqrt{2}} \psi_{m-1} & \text { if } 1-\Lambda \leq m \leq \Lambda \\
0 & \text { otherwise, }\end{cases}
\end{aligned}
$$

where $b_{m}:=\sqrt{1+\frac{m(m-1)}{k}}$.

The $O(2)$-invariant $x^{2}:=x_{+} x_{-}+x_{-} x_{+}=\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}$ plays the role of the square distance from the origin.

The $O(2)$-invariant $x^{2}:=x_{+} x_{-}+x_{-} x_{+}=\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}$ plays the role of the square distance from the origin. L, x_{+}, x_{-}, x^{2} fulfill the $O(2)$-covariant relations

$$
\begin{gather*}
{\left[L, x_{ \pm}\right]= \pm x_{ \pm}, \quad x_{+}^{\dagger}=x_{-}, \quad(L)^{\dagger}=L,} \tag{1}\\
{\left[x_{+}, x_{-}\right]=-\frac{L}{k}+\left[1+\frac{\Lambda(\Lambda+1)}{k}\right] \frac{\widetilde{P}_{\Lambda}-\widetilde{P}_{-\Lambda}}{2} .,} \tag{2}\\
x^{2}=1+\frac{L^{2}}{k}-\left[1+\frac{\Lambda(\Lambda+1)}{k}\right] \frac{\widetilde{P}_{\Lambda}+\widetilde{P}_{-\Lambda}}{2}, \tag{3}\\
\prod_{m=-\Lambda}^{\Lambda}(L-m l)=0, \quad\left(x_{ \pm}\right)^{2 \Lambda+1}=0 . \tag{4}
\end{gather*}
$$

Here \widetilde{P}_{m} is the projection over the 1-dim subspace spanned by ψ_{m}, and k is a sufficiently large function of Λ, for example $k=k(\Lambda)=\Lambda^{2}(\Lambda+1)^{2}$.

O(3)-equivariant fuzzy sphere - The essentials

We previously built a O (3)-equivariant fuzzy sphere, formed by a sequence $\left\{\mathcal{A}_{\Lambda, 3}\right\}_{\Lambda \in \mathbb{N}}$ of unitary irreducible representations $\left(\pi_{\Lambda, 3}, \mathcal{H}_{\Lambda, 3}\right)$ of $\operatorname{Uso}(4)$ and the corresponding representation spaces were denoted by
$\mathcal{H}_{\Lambda, 3}:=\operatorname{span}\left\{\boldsymbol{\psi}_{l}^{m}\left|I \in \mathbb{N}_{0}, m \in \mathbb{Z}, I \leq \Lambda,|m| \leq I\right\}, \quad\right.$ where $\quad \Lambda \in \mathbb{N}$.

O(3)-equivariant fuzzy sphere - The essentials

We previously built a O (3)-equivariant fuzzy sphere, formed by a sequence $\left\{\mathcal{A}_{\Lambda, 3}\right\}_{\Lambda \in \mathbb{N}}$ of unitary irreducible representations $\left(\pi_{\Lambda, 3}, \mathcal{H}_{\Lambda, 3}\right)$ of $\operatorname{Uso}(4)$ and the corresponding representation spaces were denoted by

$$
\mathcal{H}_{\Lambda, 3}:=\operatorname{span}\left\{\boldsymbol{\psi}_{l}^{m}\left|I \in \mathbb{N}_{0}, m \in \mathbb{Z}, I \leq \Lambda,|m| \leq I\right\}, \quad \text { where } \quad \Lambda \in \mathbb{N} .\right.
$$

The angular momentum operators $\left\{L_{a}\right\}$ and the coordinate operators $\left\{x_{a}\right\}$ (here $a=0,+,-$) are obtained from the corresponding ones $\left\{L_{i}\right\}_{i=1}^{3}$ and $\left\{x_{i}\right\}_{i=1}^{3}$ as follows:

$$
L_{ \pm}:=\frac{L_{1} \pm i L_{2}}{\sqrt{2}}, \quad L_{0}:=L_{3}, \quad x_{ \pm}:=\frac{x_{1} \pm i x_{2}}{\sqrt{2}}, \quad x_{0}:=x_{3} .
$$

O(3)-equivariant fuzzy sphere - The essentials

We previously built a O (3)-equivariant fuzzy sphere, formed by a sequence $\left\{\mathcal{A}_{\Lambda, 3}\right\}_{\Lambda \in \mathbb{N}}$ of unitary irreducible representations $\left(\pi_{\Lambda, 3}, \mathcal{H}_{\Lambda, 3}\right)$ of U so(4) and the corresponding representation spaces were denoted by

$$
\mathcal{H}_{\Lambda, 3}:=\operatorname{span}\left\{\boldsymbol{\psi}_{l}^{m}\left|I \in \mathbb{N}_{0}, m \in \mathbb{Z}, I \leq \Lambda,|m| \leq I\right\}, \quad \text { where } \quad \Lambda \in \mathbb{N} .\right.
$$

The angular momentum operators $\left\{L_{a}\right\}$ and the coordinate operators $\left\{x_{a}\right\}$ (here $a=0,+,-$) are obtained from the corresponding ones $\left\{L_{i}\right\}_{i=1}^{3}$ and $\left\{x_{i}\right\}_{i=1}^{3}$ as follows:

$$
L_{ \pm}:=\frac{L_{1} \pm i L_{2}}{\sqrt{2}}, \quad L_{0}:=L_{3}, \quad x_{ \pm}:=\frac{x_{1} \pm i x_{2}}{\sqrt{2}}, \quad x_{0}:=x_{3}
$$

Furthermore, their action is

$$
\begin{equation*}
L_{0} \psi_{l}^{m}=m \psi_{l}^{m}, \quad L_{ \pm} \psi_{l}^{m}=\frac{\sqrt{(I \mp m)(I \pm m+1)}}{\sqrt{2}} \psi_{l}^{m \pm 1} \tag{5}
\end{equation*}
$$

$$
x_{a} \psi_{l}^{m}= \begin{cases}c_{l} A_{l}^{a, m} \psi_{l-1}^{m+a}+c_{l+1} B_{l}^{a, m} \psi_{l+1}^{m+a} & \text { if } I<\Lambda \tag{6}\\ c_{\Lambda} A_{\Lambda}^{a, m} \psi_{\Lambda-1}^{m+a} & \text { if } I=\Lambda \\ 0 & \text { otherwise }\end{cases}
$$

$$
x_{a} \psi_{l}^{m}= \begin{cases}c_{l} A_{l}^{a, m} \psi_{l-1}^{m+a}+c_{l+1} B_{l}^{a, m} \psi_{l+1}^{m+a} & \text { if } I<\Lambda, \tag{6}\\ c_{\Lambda} A_{\Lambda}^{a, m} \psi_{\Lambda-1}^{m+a} & \text { if } I=\Lambda, \\ 0 & \text { otherwise },\end{cases}
$$

where $A_{l}^{a, m}=B_{I-1}^{-a, m-a}$ and

$$
\begin{gather*}
A_{l}^{0, m}=\sqrt{\frac{(I+m)(I-m)}{(2 I+1)(2 I-1)}}, A_{l}^{ \pm, m}=\frac{ \pm 1}{\sqrt{2}} \sqrt{\frac{(I \mp m)(I \mp m-1)}{(2 I-1)(2 I+1)}}, \tag{7}\\
c_{l}:=\sqrt{1+\frac{I^{2}}{k}} \quad 1 \leq I \leq \Lambda, \quad c_{0}=c_{\Lambda+1}=0, \tag{8}\\
\text { with } \quad k=k(\Lambda)=\Lambda^{2}(\Lambda+1)^{2}
\end{gather*}
$$

Moreover, we introduced the operator $\boldsymbol{x}^{2}:=x_{i} x_{i}=x_{a} x_{-a}$, which represents the square distance from the origin, and we showed that

$$
\begin{equation*}
x^{2}=1+\frac{L^{2}+1}{k}-\left[1+\frac{(\Lambda+1)^{2}}{k}\right] \frac{\Lambda+1}{2 \Lambda+1} \widetilde{P}_{\Lambda} \tag{9}
\end{equation*}
$$

[here \widetilde{P}_{I} is the projection on the eigenspace of L^{2} linked to the eigenvalue $I(I+1)]$.

Moreover, we introduced the operator $\boldsymbol{x}^{2}:=x_{i} x_{i}=x_{a} x_{-a}$, which represents the square distance from the origin, and we showed that

$$
\begin{equation*}
x^{2}=1+\frac{L^{2}+1}{k}-\left[1+\frac{(\Lambda+1)^{2}}{k}\right] \frac{\Lambda+1}{2 \Lambda+1} \widetilde{P}_{\Lambda} \tag{9}
\end{equation*}
$$

[here \widetilde{P}_{l} is the projection on the eigenspace of L^{2} linked to the eigenvalue $I(I+1)$].
In conclusion, we proved that

$$
\begin{gathered}
x_{i}^{\dagger}=x_{i}, \quad L_{i}^{\dagger}=L_{i}, \quad\left[L_{i}, x_{j}\right]=i \varepsilon^{i j h} x_{h}, \quad\left[L_{i}, L_{j}\right]=i \varepsilon^{i j h} L_{h}, \quad x_{i} L_{i}=0 \\
{\left[x_{i}, x_{j}\right]=i \varepsilon^{i j h}\left(-\frac{l}{k}+K \widetilde{P}_{\Lambda}\right) L_{h} \quad i, j, h \in\{1,2,3\},} \\
\prod_{l=0}^{\Lambda}\left[L^{2}-I(I+1) I\right]=0, \quad \prod_{m=-l}^{l}\left(L_{3}-m l\right) \widetilde{P}_{l}=0,\left(x_{ \pm}\right)^{2 \Lambda+1}=0 .
\end{gathered}
$$

Coherent states - Preliminaries

The notion of coherent states (CS) has arisen with the problem of saturating the quantum uncertainty relation (UR) on \mathbb{R}^{D}; on other manifolds M nontrivial problem! On $M=\mathbb{R}^{D}$ CS make up an overcomplete set in $\mathcal{H}:=\mathcal{L}^{2}\left(\mathbb{R}^{D}\right)$ yielding a nice resolution of the identity. These properties are usually taken as minimal requirements for defining CS on other M. A set of coherent states $\left\{\phi_{l}\right\}$ is a particular set of vectors of a Hilbert space \mathcal{H}, l is an element of an appropriate label (and topological) space Ω s.t.:

Coherent states - Preliminaries

The notion of coherent states (CS) has arisen with the problem of saturating the quantum uncertainty relation (UR) on \mathbb{R}^{D}; on other manifolds M nontrivial problem! On $M=\mathbb{R}^{D}$ CS make up an overcomplete set in $\mathcal{H}:=\mathcal{L}^{2}\left(\mathbb{R}^{D}\right)$ yielding a nice resolution of the identity. These properties are usually taken as minimal requirements for defining $C S$ on other M. A set of coherent states $\left\{\phi_{l}\right\}$ is a particular set of vectors of a Hilbert space \mathcal{H}, I is an element of an appropriate label (and topological) space Ω s.t.:

- CONTINUITY: the vector ϕ_{l} is a strongly continuous function of the label I.

Coherent states - Preliminaries

The notion of coherent states (CS) has arisen with the problem of saturating the quantum uncertainty relation (UR) on \mathbb{R}^{D}; on other manifolds M nontrivial problem! On $M=\mathbb{R}^{D}$ CS make up an overcomplete set in $\mathcal{H}:=\mathcal{L}^{2}\left(\mathbb{R}^{D}\right)$ yielding a nice resolution of the identity. These properties are usually taken as minimal requirements for defining $C S$ on other M. A set of coherent states $\left\{\phi_{l}\right\}$ is a particular set of vectors of a Hilbert space \mathcal{H}, I is an element of an appropriate label (and topological) space Ω s.t.:

- CONTINUITY: the vector ϕ_{l} is a strongly continuous function of the label l.
- COMPLETENESS (RESOLUTION ON UNITY): $\exists d l$ s.t.

$$
I=\int_{\Omega} \phi_{I}\left\langle\phi_{l}, \cdot\right\rangle d I=\int_{\Omega}\left|\phi_{I}\right\rangle\left\langle\phi_{l}\right| d l .
$$

Coherent states - Preliminaries

The notion of coherent states (CS) has arisen with the problem of saturating the quantum uncertainty relation (UR) on \mathbb{R}^{D}; on other manifolds M nontrivial problem! On $M=\mathbb{R}^{D}$ CS make up an overcomplete set in $\mathcal{H}:=\mathcal{L}^{2}\left(\mathbb{R}^{D}\right)$ yielding a nice resolution of the identity. These properties are usually taken as minimal requirements for defining $C S$ on other M. A set of coherent states $\left\{\phi_{l}\right\}$ is a particular set of vectors of a Hilbert space \mathcal{H}, I is an element of an appropriate label (and topological) space Ω s.t.:

- CONTINUITY: the vector ϕ_{l} is a strongly continuous function of the label l.
- COMPLETENESS (RESOLUTION ON UNITY): $\exists d l$ s.t.

$$
I=\int_{\Omega} \phi_{l}\left\langle\phi_{l}, \cdot\right\rangle d I=\int_{\Omega}\left|\phi_{I}\right\rangle\left\langle\phi_{l}\right| d l .
$$

- (WEAKER) COMPLETENESS (TOTAL SET OF VECTORS):

$$
\overline{\operatorname{span}\left\{\phi_{I}: I \in \Omega\right\}}=\mathcal{H}_{-}
$$

Coherent states - Perelomov

In particular A. Perelomov (cf. his book) chooses $\Omega=G$: the system of $\mathrm{CS}\left\{T, \phi_{0}\right\}$ is the set $\left\{\phi_{g}=T(g) \phi_{0}\right\}_{g \in \frac{G}{H}}$, where G is an arbitrary Lie group, H the isotropy subgroup of $\phi_{0}, T(g)$ is an unitary irreducible representation acting on a Hilbert space \mathcal{H} and $\phi_{0} \in \mathcal{H}$.

Coherent states - Perelomov

In particular A. Perelomov (cf. his book) chooses $\Omega=G$: the system of CS $\left\{T, \phi_{0}\right\}$ is the set $\left\{\phi_{g}=T(g) \phi_{0}\right\}_{g \in \frac{G}{H}}$, where G is an arbitrary Lie group, H the isotropy subgroup of $\phi_{0}, T(g)$ is an unitary irreducible representation acting on a Hilbert space \mathcal{H} and $\phi_{0} \in \mathcal{H}$.

If there exists a left- and right-invariant measure $d \mu(g)$ on it, then every system of coherent states $\left\{T, \phi_{0}\right\}$ fulfills the CONTINUITY and COMPLETENESS properties.

Coherent states - Perelomov

In particular A. Perelomov (cf. his book) chooses $\Omega=G$: the system of $\mathrm{CS}\left\{T, \phi_{0}\right\}$ is the set $\left\{\phi_{g}=T(g) \phi_{0}\right\}_{g \in \frac{G}{H}}$, where G is an arbitrary Lie group, H the isotropy subgroup of $\phi_{0}, T(g)$ is an unitary irreducible representation acting on a Hilbert space \mathcal{H} and $\phi_{0} \in \mathcal{H}$.

If there exists a left- and right-invariant measure $d \mu(g)$ on it, then every system of coherent states $\left\{T, \phi_{0}\right\}$ fulfills the CONTINUITY and COMPLETENESS properties.

The system of states which is as close as possible to the classical states is obtained, according to Perelomov, once one chooses ϕ_{0} as the state for which the isotropy subalgebra is maximal; in the cases of our interest those states correspond to the ones which minimize the dispersion of the quadratic Casimir C_{2}.

Heisenberg UR - analog on S^{1}

Let $L=-i\left(x_{1} \partial_{2}-x_{2} \partial_{1}\right)$ a.m. operator on $\mathbb{R}^{2} .\left[L, x_{1}\right]=i x_{2}$, $\left[L, x_{2}\right]=-i x_{1}$ implies the UR
$\Delta L^{2}\left(\Delta x_{1}\right)^{2} \geq \frac{1}{4}\left\langle x_{2}\right\rangle^{2}, \Delta L^{2}\left(\Delta x_{2}\right)^{2} \geq \frac{1}{4}\left\langle x_{1}\right\rangle^{2} \Rightarrow \Delta L^{2}(\Delta x)^{2} \geq \frac{1}{4}\langle x\rangle^{2} ;$
valid also on $\mathcal{H}=\mathcal{L}^{2}\left(S^{1}\right)$, but under $\boldsymbol{x}^{2} \equiv x_{1}^{2}+x_{2}^{2}=1 ; 3^{\text {rd }}$ ineq is a lower bound for $\Delta L|\Delta x|$ in phase space.

Heisenberg UR - analog on S^{1}

Let $L=-i\left(x_{1} \partial_{2}-x_{2} \partial_{1}\right)$ a.m. operator on $\mathbb{R}^{2} .\left[L, x_{1}\right]=i x_{2}$, $\left[L, x_{2}\right]=-i x_{1}$ implies the UR
$\Delta L^{2}\left(\Delta x_{1}\right)^{2} \geq \frac{1}{4}\left\langle x_{2}\right\rangle^{2}, \Delta L^{2}\left(\Delta x_{2}\right)^{2} \geq \frac{1}{4}\left\langle x_{1}\right\rangle^{2} \Rightarrow \Delta L^{2}(\Delta x)^{2} \geq \frac{1}{4}\langle x\rangle^{2} ;$
valid also on $\mathcal{H}=\mathcal{L}^{2}\left(S^{1}\right)$, but under $\boldsymbol{x}^{2} \equiv x_{1}^{2}+x_{2}^{2}=1 ; 3^{\text {rd }}$ ineq is a lower bound for $\Delta L|\Delta x|$ in phase space. The orthonormal basis $\mathcal{B}:=\left\{\psi_{n}\right\}_{n \in \mathbb{Z}}$ of $\mathcal{L}^{2}\left(S^{1}\right)$, fulfills $L \psi_{n}=n \psi_{n}, x_{ \pm} \psi_{n}=\psi_{n \pm 1}$

Heisenberg UR - analog on S^{1}

Let $L=-i\left(x_{1} \partial_{2}-x_{2} \partial_{1}\right)$ a.m. operator on $\mathbb{R}^{2} .\left[L, x_{1}\right]=i x_{2}$, $\left[L, x_{2}\right]=-i x_{1}$ implies the UR
$\Delta L^{2}\left(\Delta x_{1}\right)^{2} \geq \frac{1}{4}\left\langle x_{2}\right\rangle^{2}, \Delta L^{2}\left(\Delta x_{2}\right)^{2} \geq \frac{1}{4}\left\langle x_{1}\right\rangle^{2} \Rightarrow \Delta L^{2}(\Delta x)^{2} \geq \frac{1}{4}\langle x\rangle^{2} ;$ valid also on $\mathcal{H}=\mathcal{L}^{2}\left(S^{1}\right)$, but under $\boldsymbol{x}^{2} \equiv x_{1}^{2}+x_{2}^{2}=1 ; 3^{\text {rd }}$ ineq is a lower bound for $\Delta L|\Delta \boldsymbol{x}|$ in phase space. The orthonormal basis $\mathcal{B}:=\left\{\psi_{n}\right\}_{n \in \mathbb{Z}}$ of $\mathcal{L}^{2}\left(S^{1}\right)$, fulfills $L \psi_{n}=n \psi_{n}, x_{ \pm} \psi_{n}=\psi_{n \pm 1}$ and

$$
\begin{gathered}
I=\sum_{n} P_{n} \stackrel{*}{=} \int_{G / H} P_{x} d \mu(x), \quad P_{n}:=\psi_{n}\left\langle\psi_{n}, \cdot\right\rangle . \\
G:=\left\{\left(x_{+}\right)^{n} e^{i(a L+b)} \mid(a, b, n) \in \mathbb{R}^{2} \times \mathbb{Z}\right\} \simeq U(1) \times U(1) \ltimes \mathbb{Z}
\end{gathered}
$$

$H=\left\{e^{i(a L+b)}\right\} \simeq[U(1)]^{2}$ is the isotropy subgroup of ψ_{0}, and $G / H=\left\{\left(x_{+}\right)^{n} \mid n \in \mathbb{Z}\right\}$, hence $*$ integrating over G / H amounts to summing over $n \in \mathbb{Z}$,

Heisenberg UR - analog on S^{1}

Let $L=-i\left(x_{1} \partial_{2}-x_{2} \partial_{1}\right)$ a.m. operator on \mathbb{R}^{2}. $\left[L, x_{1}\right]=i x_{2}$, $\left[L, x_{2}\right]=-i x_{1}$ implies the UR
$\Delta L^{2}\left(\Delta x_{1}\right)^{2} \geq \frac{1}{4}\left\langle x_{2}\right\rangle^{2}, \Delta L^{2}\left(\Delta x_{2}\right)^{2} \geq \frac{1}{4}\left\langle x_{1}\right\rangle^{2} \Rightarrow \Delta L^{2}(\Delta x)^{2} \geq \frac{1}{4}\langle x\rangle^{2} ;$ valid also on $\mathcal{H}=\mathcal{L}^{2}\left(S^{1}\right)$, but under $x^{2} \equiv x_{1}^{2}+x_{2}^{2}=1 ; 3^{\text {rd }}$ ineq is a lower bound for $\Delta L|\Delta x|$ in phase space. The orthonormal basis $\mathcal{B}:=\left\{\psi_{n}\right\}_{n \in \mathbb{Z}}$ of $\mathcal{L}^{2}\left(S^{1}\right)$, fulfills $L \psi_{n}=n \psi_{n}, x_{ \pm} \psi_{n}=\psi_{n \pm 1}$ and

$$
\begin{gathered}
I=\sum_{n} P_{n} \stackrel{*}{=} \int_{G / H} P_{x} d \mu(x), \quad P_{n}:=\psi_{n}\left\langle\psi_{n},\right\rangle . \\
G:=\left\{\left(x_{+}\right)^{n} e^{i(a L+b)} \mid(a, b, n) \in \mathbb{R}^{2} \times \mathbb{Z}\right\} \simeq U(1) \times U(1) \ltimes \mathbb{Z}
\end{gathered}
$$

$H=\left\{e^{i(a L+b)}\right\} \simeq[U(1)]^{2}$ is the isotropy subgroup of ψ_{0}, and $G / H=\left\{\left(x_{+}\right)^{n} \mid n \in \mathbb{Z}\right\}$, hence $*$ integrating over G / H amounts to summing over $n \in \mathbb{Z}$, and this can be applied also to our fuzzy circle. In this sense $\left\{T, \psi_{0}\right\}$ is a CS system.

$U R$ on S^{2}

$\left[L_{i}, L_{j}\right]=i \varepsilon^{i j k} L_{k},\left[L_{i}, x^{j}\right]=i i^{i j k} x^{k}$ valid on $\mathcal{L}^{2}\left(\mathbb{R}^{3}\right)$, and $\mathcal{L}^{2}\left(S^{2}\right)$ implies the UR
$\Delta L_{1} \Delta L_{2} \geq \frac{1}{2}\left|\left\langle L_{3}\right\rangle\right|, \quad \Delta L_{1} \Delta x^{2} \geq \frac{1}{2}\left|\left\langle x^{3}\right\rangle\right|, \quad \Delta L_{3} \Delta x^{1} \geq \frac{1}{2}\left|\left\langle x^{2}\right\rangle\right|, \cdots$ which are the analogs of the Heisenberg UR.

$U R$ on S^{2}

$\left[L_{i}, L_{j}\right]=i \varepsilon^{i j k} L_{k},\left[L_{i}, x^{j}\right]=i \varepsilon^{i j k} x^{k}$ valid on $\mathcal{L}^{2}\left(\mathbb{R}^{3}\right)$, and $\mathcal{L}^{2}\left(S^{2}\right)$ implies the UR
$\Delta L_{1} \Delta L_{2} \geq \frac{1}{2}\left|\left\langle L_{3}\right\rangle\right|, \quad \Delta L_{1} \Delta x^{2} \geq \frac{1}{2}\left|\left\langle x^{3}\right\rangle\right|, \quad \Delta L_{3} \Delta x^{1} \geq \frac{1}{2}\left|\left\langle x^{2}\right\rangle\right|, \cdots$ which are the analogs of the Heisenberg UR.
Coming back to Perelomov CS, if we take the irrep $\left(\pi_{\Lambda}, V_{\Lambda}\right)$ of Uso(3), characterized by

$$
L^{2}=L_{1}^{2}+L_{2}^{2}+L_{3}^{2}=\Lambda(\Lambda+1),
$$

it's easy to see that the dispersion $(\Delta \mathbf{L})^{2}:=\sum_{i} \Delta L_{i}^{2}$ of \mathbf{L} is minimal for vectors $Y_{\Lambda}^{ \pm \Lambda}$ and its explicit value is $(\Delta \mathbf{L})_{\text {min }}^{2}=\Lambda$.

$U R$ on S^{2}

$\left[L_{i}, L_{j}\right]=i \varepsilon^{i j k} L_{k},\left[L_{i}, x^{j}\right]=i \varepsilon^{i j k} x^{k}$ valid on $\mathcal{L}^{2}\left(\mathbb{R}^{3}\right)$, and $\mathcal{L}^{2}\left(S^{2}\right)$ implies the UR
$\Delta L_{1} \Delta L_{2} \geq \frac{1}{2}\left|\left\langle L_{3}\right\rangle\right|, \quad \Delta L_{1} \Delta x^{2} \geq \frac{1}{2}\left|\left\langle x^{3}\right\rangle\right|, \quad \Delta L_{3} \Delta x^{1} \geq \frac{1}{2}\left|\left\langle x^{2}\right\rangle\right|, \cdots$
which are the analogs of the Heisenberg UR.
Coming back to Perelomov CS, if we take the irrep $\left(\pi_{\Lambda}, V_{\Lambda}\right)$ of Uso(3), characterized by

$$
L^{2}=L_{1}^{2}+L_{2}^{2}+L_{3}^{2}=\Lambda(\Lambda+1)
$$

it's easy to see that the dispersion $(\Delta \mathbf{L})^{2}:=\sum_{i} \Delta L_{i}^{2}$ of \mathbf{L} is minimal for vectors $Y_{\Lambda}^{ \pm \Lambda}$ and its explicit value is $(\Delta \mathbf{L})_{\text {min }}^{2}=\Lambda$.

Proposition

The following UR holds on $\mathcal{L}^{2}\left(S^{2}\right)$, and is saturated by the spin (and Perelomov) CS belonging to each $V_{\Lambda}, \Lambda \in \mathbb{N}_{0}$.

$$
\Delta L^{2} \geq|\langle\boldsymbol{L}\rangle| \quad \Leftrightarrow \quad \boldsymbol{L}^{2} \geq|\langle\boldsymbol{L}\rangle|(|\langle\boldsymbol{L}\rangle|+1) .
$$

Applying Perelomov construction one finds the resolution of the identity
$I=c \sum_{l=0}^{\infty} \int_{S O(3)} d \mu(g) P_{l, g}, \quad P_{l, g}=\phi_{l, g}\left\langle\phi_{l, g}, \cdot\right\rangle, \quad \phi_{l, g}:=T(g) Y_{l}^{\prime}$.
Integration over $S O(3)$ instead of S^{2} results only in a change of the normalization constant by 2π. Probably also the sum can be incorporated in the integral over a larger group.

Applying Perelomov construction one finds the resolution of the identity
$I=c \sum_{l=0}^{\infty} \int_{S O(3)} d \mu(g) P_{l, g}, \quad P_{l, g}=\phi_{l, g}\left\langle\phi_{l, g}, \cdot\right\rangle, \quad \phi_{l, g}:=T(g) Y_{l}^{l}$.
Integration over $S O(3)$ instead of S^{2} results only in a change of the normalization constant by 2π. Probably also the sum can be incorporated in the integral over a larger group.
We can use these arguments for the Madore fuzzy sphere, because of the isomorphism

$$
x_{i}=\frac{2 L_{i}}{\sqrt{n^{2}-1}}, \quad i=1,2,3
$$

between the algebra of observables M_{n} and a suitable irreducible representation ($\pi_{\Lambda}, V_{\Lambda}$) of Uso(3), having dimension $n=2 \Lambda+1$.

Applying Perelomov construction one finds the resolution of the identity
$I=c \sum_{l=0}^{\infty} \int_{S O(3)} d \mu(g) P_{l, g}, \quad P_{l, g}=\phi_{l, g}\left\langle\phi_{l, g}, \cdot\right\rangle, \quad \phi_{l, g}:=T(g) Y_{l}^{\prime}$.
Integration over $S O(3)$ instead of S^{2} results only in a change of the normalization constant by 2π. Probably also the sum can be incorporated in the integral over a larger group.
We can use these arguments for the Madore fuzzy sphere, because of the isomorphism

$$
x_{i}=\frac{2 L_{i}}{\sqrt{n^{2}-1}}, \quad i=1,2,3
$$

between the algebra of observables M_{n} and a suitable irreducible representation ($\pi_{\Lambda}, V_{\Lambda}$) of Uso(3), having dimension $n=2 \Lambda+1$. Also in this case the dispersion of $\boldsymbol{x}^{2}:=x_{i} x_{i} \equiv 1$ is minimal on the states $Y_{\Lambda}^{ \pm \Lambda}$ and it is

$$
\begin{equation*}
(\Delta \mathbf{x})_{\min }^{2}=\frac{2(n-1)}{n^{2}-1}=\frac{1}{\Lambda+1} . \tag{10}
\end{equation*}
$$

Coherent states - Our targets

Our first target is give a meaningful definition of spatial dispersion $(\Delta \boldsymbol{x})^{2}$ on our fuzzy spaces, which will be a good measure of the localization of a state in configuration space \mathbb{R}^{D}; so we adopt the expectation value (variance)

$$
\begin{equation*}
(\Delta x)^{2}:=\left\langle(x-\langle x\rangle)^{2}\right\rangle=\left\langle x^{2}\right\rangle-\langle\boldsymbol{x}\rangle^{2}=\left\langle\boldsymbol{x}^{2}\right\rangle-\sum_{i=1}^{D}\left\langle x_{i}\right\rangle^{2} \tag{11}
\end{equation*}
$$

on the state;

Coherent states - Our targets

Our first target is give a meaningful definition of spatial dispersion $(\Delta \boldsymbol{x})^{2}$ on our fuzzy spaces, which will be a good measure of the localization of a state in configuration space \mathbb{R}^{D}; so we adopt the expectation value (variance)

$$
\begin{equation*}
(\Delta x)^{2}:=\left\langle(x-\langle\boldsymbol{x}\rangle)^{2}\right\rangle=\left\langle\boldsymbol{x}^{2}\right\rangle-\langle\boldsymbol{x}\rangle^{2}=\left\langle\boldsymbol{x}^{2}\right\rangle-\sum_{i=1}^{D}\left\langle x_{i}\right\rangle^{2} \tag{11}
\end{equation*}
$$

on the state; to motivate this choice we note that it is manifestly $O(D)$-invariant and that if the state is localized in a small region $\sigma_{\langle x\rangle} \subset S^{d}$ around a point $\langle\boldsymbol{x}\rangle \in S^{d}$ then $(\Delta \boldsymbol{x})^{2}$ essentially reduces to the average square displacement in the tangent plane at $\langle\boldsymbol{x}\rangle$, as one wishes.

Furthermore, for a x_{i} operator of our fuzzy spaces to approximate well the corresponding coordinate of a quantum particle forced to stay on the unit sphere, its spectrum should fulfill some properties.

Furthermore, for a x_{i} operator of our fuzzy spaces to approximate well the corresponding coordinate of a quantum particle forced to stay on the unit sphere, its spectrum should fulfill some properties.

In particular we expect that

- The maximal and the minimal eigenvalues, in the commutative limit, must converge to 1 and -1 , respectively.
- In the commutative limit we get $\Sigma_{x_{i}}(\Lambda) \rightarrow[-1,1]$.

Furthermore, for a x_{i} operator of our fuzzy spaces to approximate well the corresponding coordinate of a quantum particle forced to stay on the unit sphere, its spectrum should fulfill some properties.

In particular we expect that

- The maximal and the minimal eigenvalues, in the commutative limit, must converge to 1 and -1 , respectively.
- In the commutative limit we get $\Sigma_{x_{i}}(\Lambda) \rightarrow[-1,1]$. According to this, an analysis of $\Sigma_{x_{i}}(\Lambda)$ is our second target.

Furthermore, for a x_{i} operator of our fuzzy spaces to approximate well the corresponding coordinate of a quantum particle forced to stay on the unit sphere, its spectrum should fulfill some properties.

In particular we expect that

- The maximal and the minimal eigenvalues, in the commutative limit, must converge to 1 and -1 , respectively.
- In the commutative limit we get $\Sigma_{x_{i}}(\Lambda) \rightarrow[-1,1]$. According to this, an analysis of $\Sigma_{x_{i}}(\Lambda)$ is our second target.

The third target is determine the most localized states of our fuzzy spaces, i.e. the ones which minimize the spatial dispersion $(\Delta \boldsymbol{x})^{2}$, and (as we will see) this target is strictly linked to the previous one.

If $\widehat{\chi}$ is a state of our $O(2)$-equivariant fuzzy circle, then the construction of Perelomov with $G \equiv S O(3)$ (which is a larger group of the algebra automorphisms), $T \equiv \pi_{\Lambda, 2}$ and $\mathcal{H} \equiv \mathcal{H}_{\Lambda, 2}$ returns us a system of states which fulfills the CONTINUITY and COMPLETENESS properties;

If $\widehat{\chi}$ is a state of our $O(2)$-equivariant fuzzy circle, then the construction of Perelomov with $G \equiv S O(3)$ (which is a larger group of the algebra automorphisms), $T \equiv \pi_{\Lambda, 2}$ and $\mathcal{H} \equiv \mathcal{H}_{\Lambda, 2}$ returns us a system of states which fulfills the CONTINUITY and COMPLETENESS properties; however the spatial dispersion $(\Delta x)^{2}$ is only $O(2)$-covariant.

If $\widehat{\chi}$ is a state of our $O(2)$-equivariant fuzzy circle, then the construction of Perelomov with $G \equiv S O(3)$ (which is a larger group of the algebra automorphisms), $T \equiv \pi_{\Lambda, 2}$ and $\mathcal{H} \equiv \mathcal{H}_{\Lambda, 2}$ returns us a system of states which fulfills the CONTINUITY and COMPLETENESS properties; however the spatial dispersion $(\Delta x)^{2}$ is only $O(2)$-covariant.
The analogous situation occurs for our O (3)-equivariant fuzzy sphere.

If $\widehat{\chi}$ is a state of our $O(2)$-equivariant fuzzy circle, then the construction of Perelomov with $G \equiv S O(3)$ (which is a larger group of the algebra automorphisms), $T \equiv \pi_{\Lambda, 2}$ and $\mathcal{H} \equiv \mathcal{H}_{\Lambda, 2}$ returns us a system of states which fulfills the CONTINUITY and COMPLETENESS properties; however the spatial dispersion $(\Delta x)^{2}$ is only $O(2)$-covariant.
The analogous situation occurs for our O (3)-equivariant fuzzy sphere.
For this reason, we try to apply the construction of Perelomov to $\widehat{\chi}$ also with $G \equiv O(2)$ for the circle and $O(3)$ for the sphere. This is our fourth target

Coherent states - The x x^{i} eigenvalue-problem

The covariance of the algebra under $O(D)$ transformations $\boldsymbol{x} \mapsto \boldsymbol{x}^{\prime}=R \boldsymbol{x}, \boldsymbol{L} \mapsto \boldsymbol{L}^{\prime}=R \boldsymbol{L}$ implies that the spectrum $\Sigma_{x_{i}}(\Lambda)$ of any coordinate operator x_{i} of our fuzzy spaces is the same, so we can focus our attention on the spectra of x_{1} and x_{3} when $D=2$ and $D=3$, respectively.

Coherent states - The x x^{i} eigenvalue-problem

The covariance of the algebra under $O(D)$ transformations $\boldsymbol{x} \mapsto \boldsymbol{x}^{\prime}=R \boldsymbol{x}, \boldsymbol{L} \mapsto \boldsymbol{L}^{\prime}=R \boldsymbol{L}$ implies that the spectrum $\Sigma_{x_{i}}(\Lambda)$ of any coordinate operator x_{i} of our fuzzy spaces is the same, so we can focus our attention on the spectra of x_{1} and x_{3} when $D=2$ and $D=3$, respectively.
For convenience, we study the eigenvalue equations

$$
\begin{equation*}
x_{1} \psi=\alpha_{1} \psi \text { when } D=2 \quad \text { and } \quad x_{3} \psi=\alpha_{2} \psi \text { when } D=3 . \tag{12}
\end{equation*}
$$

We don't need to make two different discussions, one for $D=2$ and one for $D=3$, for this reason now we start analyzing the three-dimensional problem.

First of all, we defined $x_{0}:=x_{3}$ and $L_{0}:=L_{3}$, but it's also true that the problem of maximizing $\left\langle x_{0}\right\rangle$ is equivalent to the one of finding the maximal eigenvalue of x_{0}; in conclusion, because of $\left[x_{0}, L_{0}\right]=0$, we can simoultaneously diagonalize x_{0} and L_{0}.

First of all, we defined $x_{0}:=x_{3}$ and $L_{0}:=L_{3}$, but it's also true that the problem of maximizing $\left\langle x_{0}\right\rangle$ is equivalent to the one of finding the maximal eigenvalue of x_{0}; in conclusion, because of $\left[x_{0}, L_{0}\right]=0$, we can simoultaneously diagonalize x_{0} and L_{0}.

However, we have to impose this system

$$
\left\{\begin{array}{l}
L_{0} \chi_{\alpha}^{\beta}=\beta \chi_{\alpha}^{\beta} \tag{13}\\
x_{0} \chi_{\alpha}^{\beta}=\alpha \chi_{\alpha}^{\beta},
\end{array}\right.
$$

First of all, we defined $x_{0}:=x_{3}$ and $L_{0}:=L_{3}$, but it's also true that the problem of maximizing $\left\langle x_{0}\right\rangle$ is equivalent to the one of finding the maximal eigenvalue of x_{0}; in conclusion, because of $\left[x_{0}, L_{0}\right]=0$, we can simoultaneously diagonalize x_{0} and L_{0}.

However, we have to impose this system

$$
\left\{\begin{array}{l}
L_{0} \chi_{\alpha}^{\beta}=\beta \chi_{\alpha}^{\beta} \tag{13}\\
x_{0} \chi_{\alpha}^{\beta}=\alpha \chi_{\alpha}^{\beta},
\end{array}\right.
$$

then, using (6) we can easily conclude that

$$
\begin{equation*}
\beta=m \in\{-\Lambda, \cdots, \Lambda\} \quad \text { and } \quad \chi_{\alpha}^{m}=\sum_{l=|m|}^{\wedge} \chi_{l}^{m} \psi_{l}^{m} . \tag{14}
\end{equation*}
$$

So we've solved the problem of finding all possible values of β in (13), of course we want now to find the values of α.

So we've solved the problem of finding all possible values of β in (13), of course we want now to find the values of α.

The $O(3)$-covariance of our model carries with it some properties and symmetries (like parity), for example it's natural to think that if α is the result of a measurement of a coordinate on a sphere, then one expects that also $-\alpha$ can be obtained if one performs another measurement on another state; and in fact the following proposition is a natural consequence of the parity symmetry.

So we've solved the problem of finding all possible values of β in (13), of course we want now to find the values of α.

The $O(3)$-covariance of our model carries with it some properties and symmetries (like parity), for example it's natural to think that if α is the result of a measurement of a coordinate on a sphere, then one expects that also $-\alpha$ can be obtained if one performs another measurement on another state; and in fact the following proposition is a natural consequence of the parity symmetry.

Proposition
If $\widetilde{\alpha}$ is an eigenvalue of x_{0}, then also $-\widetilde{\alpha}$ must be an eigenvalue of x_{0}.

We proved also that
Theorem
Let α_{0} be the maximal eigenvalue of x_{0} and χ_{0} be the corresponding eigenvector. It is such that

$$
\begin{equation*}
L_{0} \chi_{0}=0 \tag{15}
\end{equation*}
$$

We proved also that

Theorem

Let α_{0} be the maximal eigenvalue of x_{0} and χ_{0} be the corresponding eigenvector. It is such that

$$
\begin{equation*}
L_{0} \chi_{0}=0 \tag{15}
\end{equation*}
$$

The last theorem allows us to make a connection between our localyzed states and the classical ones because χ_{0} describes a particle concentrated in the x_{3}-direction and rotating around the x_{3}-axis; then, because of the constraint on the sphere, one expects 'classically' that

$$
L_{3}=(\underline{\boldsymbol{L}})_{3}=(\underline{\boldsymbol{r}} \times \underline{\boldsymbol{p}})_{3}=0
$$

as in (15).

We proved also that

Theorem

Let α_{0} be the maximal eigenvalue of x_{0} and χ_{0} be the corresponding eigenvector. It is such that

$$
\begin{equation*}
L_{0} \chi_{0}=0 \tag{15}
\end{equation*}
$$

The last theorem allows us to make a connection between our localyzed states and the classical ones because χ_{0} describes a particle concentrated in the x_{3}-direction and rotating around the x_{3}-axis; then, because of the constraint on the sphere, one expects 'classically' that

$$
L_{3}=(\underline{\boldsymbol{L}})_{3}=(\underline{\boldsymbol{r}} \times \underline{\boldsymbol{p}})_{3}=0
$$

as in (15). Furthermore, we proved that
Theorem
The maximal eigenvalue $\alpha_{0}(\Lambda)$ of x_{0} fulfills

$$
\lim _{\Lambda \rightarrow+\infty} \alpha_{0}(\Lambda)=1
$$

Theorem
$\Sigma_{x_{0}}(\Lambda)$ and $\Sigma_{x_{0}}(\Lambda+1)$ interlace.

Theorem
$\Sigma_{x_{0}}(\Lambda)$ and $\Sigma_{x_{n}}(\Lambda+1)$ interlace.
3

Figure 1: The spectrum $\Sigma_{x_{0}}(\Lambda)$ when $\Lambda=2, \cdots, 100$.

Theorem
$\Sigma_{x_{0}}(\Lambda)$ and $\Sigma_{x_{n}}(\Lambda+1)$ interlace.
3

Figure 1: The spectrum $\Sigma_{x_{0}}(\Lambda)$ when $\Lambda=2, \cdots, 100$. and we proved that
Theorem
The spectrum $\Sigma_{x_{0}}(\Lambda)$ of x_{0} becomes dense in $[-1,1]$ as $\Lambda \rightarrow+\infty$.

Coherent states - Most localized states

Now we want to solve the problem of getting the most localized states of our fuzzy spaces, as seen previously we want to minimize $(\Delta x)^{2}$; but the $O(D)$-covariance implies that $(\Delta x)_{\psi}^{2}=(\Delta R x)_{\psi}^{2}$ for every state $\psi \in \mathcal{H}_{\Lambda, D}$ and $O(D)$ - transformation R;

Coherent states - Most localized states

Now we want to solve the problem of getting the most localized states of our fuzzy spaces, as seen previously we want to minimize $(\Delta \boldsymbol{x})^{2}$; but the $O(D)$-covariance implies that $(\Delta x)_{\psi}^{2}=(\Delta R x)_{\psi}^{2}$ for every state $\psi \in \mathcal{H}_{\Lambda, D}$ and $O(D)$ - transformation R;according to this we can equivalently try to minimize

$$
\left\{\begin{array}{l}
(\Delta \boldsymbol{x})^{2}=\left\langle\boldsymbol{x}^{2}\right\rangle-\left\langle x_{1}\right\rangle^{2} \quad \text { when } D=2 \tag{16}\\
(\Delta \boldsymbol{x})^{2}=\left\langle\boldsymbol{x}^{2}\right\rangle-\left\langle x_{3}\right\rangle^{2} \quad \text { when } D=3
\end{array}\right.
$$

On the other hand, in both dimensions $x^{2}=1$ up to $\frac{1}{\Lambda^{2}}$, so the problem of minimizing $(16)_{1}$ is strictly linked to the one of maximizing $\left\langle x_{1}\right\rangle$ for $D=2$, as for $(16)_{2}$ and $\left\langle x_{3}\right\rangle$ for $D=3$.

Coherent states - Most localized states

Now we want to solve the problem of getting the most localized states of our fuzzy spaces, as seen previously we want to minimize $(\Delta x)^{2}$; but the $O(D)$-covariance implies that $(\Delta x)_{\psi}^{2}=(\Delta R x)_{\psi}^{2}$ for every state $\psi \in \mathcal{H}_{\Lambda, D}$ and $O(D)$ - transformation R;according to this we can equivalently try to minimize

$$
\left\{\begin{array}{l}
(\Delta \boldsymbol{x})^{2}=\left\langle\boldsymbol{x}^{2}\right\rangle-\left\langle x_{1}\right\rangle^{2} \quad \text { when } D=2 \tag{16}\\
(\Delta \boldsymbol{x})^{2}=\left\langle\boldsymbol{x}^{2}\right\rangle-\left\langle x_{3}\right\rangle^{2} \quad \text { when } D=3
\end{array}\right.
$$

On the other hand, in both dimensions $x^{2}=1$ up to $\frac{1}{\Lambda^{2}}$, so the problem of minimizing $(16)_{1}$ is strictly linked to the one of maximizing $\left\langle x_{1}\right\rangle$ for $D=2$, as for $(16)_{2}$ and $\left\langle x_{3}\right\rangle$ for $D=3$. We've just studied these two linked problems, and from them we learned that if we calculate (when $D=3)\left(\chi, x_{0} \chi\right)$ on

$$
\chi=\widetilde{\chi}:=\sum_{l=0}^{\Lambda} \tilde{\chi}^{\prime} \boldsymbol{\psi}_{l}^{0}, \quad \text { with } \quad \tilde{\chi}^{\prime}=\frac{\sin \left[\frac{(I+1) \pi}{\Lambda+2}\right]}{\sqrt{\frac{\Lambda+2}{2}}} \quad \text { if } 0 \leq I \leq \Lambda
$$

we get

$$
\left(\widetilde{\chi}, x_{0} \tilde{\chi}\right)>
$$

we get

$$
\begin{equation*}
\left(\widetilde{\chi}, x_{0} \tilde{\chi}\right)>1-\frac{\pi^{2}-\frac{8.9105}{4}}{2(\Lambda+2)^{2}}+O\left(\frac{1}{\Lambda^{3}}\right) . \tag{17}
\end{equation*}
$$

we get

$$
\begin{equation*}
\left(\widetilde{\chi}, x_{0} \widetilde{\chi}\right)>1-\frac{\pi^{2}-\frac{8.9105}{4}}{2(\Lambda+2)^{2}}+O\left(\frac{1}{\Lambda^{3}}\right) . \tag{17}
\end{equation*}
$$

According to the last inequality and (9) we can infer

$$
(\Delta x)_{\tilde{\chi}}^{2}:=\left(\widetilde{\chi}, x^{2} \widetilde{\chi}\right)-\left(\widetilde{\chi}, x^{0} \widetilde{\chi}\right)^{2}
$$

we get

$$
\begin{equation*}
\left(\widetilde{\chi}, x_{0} \tilde{\chi}\right)>1-\frac{\pi^{2}-\frac{8.9105}{4}}{2(\Lambda+2)^{2}}+O\left(\frac{1}{\Lambda^{3}}\right) . \tag{17}
\end{equation*}
$$

According to the last inequality and (9) we can infer

$$
\begin{aligned}
(\Delta x)_{\tilde{\chi}}^{2} & :=\left(\widetilde{\chi}, x^{2} \widetilde{\chi}\right)-\left(\widetilde{\chi}, x^{0} \widetilde{\chi}\right)^{2} \\
& <\frac{\pi^{2}-\frac{4.9105}{4}}{(\Lambda+2)^{2}}+O\left(\frac{1}{\Lambda^{3}}\right) .
\end{aligned}
$$

we get

$$
\begin{equation*}
\left(\widetilde{\chi}, x_{0} \widetilde{\chi}\right)>1-\frac{\pi^{2}-\frac{8.9105}{4}}{2(\Lambda+2)^{2}}+O\left(\frac{1}{\Lambda^{3}}\right) . \tag{17}
\end{equation*}
$$

According to the last inequality and (9) we can infer

$$
\begin{aligned}
(\Delta x)_{\tilde{\chi}}^{2} & :=\left(\widetilde{\chi}, x^{2} \widetilde{\chi}\right)-\left(\widetilde{\chi}, x^{0} \widetilde{\chi}\right)^{2} \\
& <\frac{\pi^{2}-\frac{4.9105}{4}}{(\Lambda+2)^{2}}+O\left(\frac{1}{\Lambda^{3}}\right) .
\end{aligned}
$$

and a similar vector $\widetilde{\widetilde{\chi}}$ can be used when $D=2$ to prove that
we get

$$
\begin{equation*}
\left(\widetilde{\chi}, x_{0} \widetilde{\chi}\right)>1-\frac{\pi^{2}-\frac{8.9105}{4}}{2(\Lambda+2)^{2}}+O\left(\frac{1}{\Lambda^{3}}\right) \tag{17}
\end{equation*}
$$

According to the last inequality and (9) we can infer

$$
\begin{aligned}
(\Delta x)_{\tilde{\chi}}^{2} & :=\left(\widetilde{\chi}, x^{2} \widetilde{\chi}\right)-\left(\widetilde{\chi}, x^{0} \widetilde{\chi}\right)^{2} \\
& <\frac{\pi^{2}-\frac{4.9105}{4}}{(\Lambda+2)^{2}}+O\left(\frac{1}{\Lambda^{3}}\right) .
\end{aligned}
$$

and a similar vector $\widetilde{\widetilde{\chi}}$ can be used when $D=2$ to prove that

$$
(\Delta x)_{\tilde{\widetilde{\chi}}}^{2}=\left[\frac{\pi}{2(\Lambda+1)}\right]^{2}+O\left(\frac{1}{\Lambda^{3}}\right) .
$$

Comparison with Perelomov \& Madore

More precisely, we will compare the spatial dispersion $(\Delta x)^{2}$ of the Madore fuzzy sphere with the our $(\Delta x)^{2}$ when the representation spaces are

$$
V_{\Lambda}:=\operatorname{span}\left\{Y_{\Lambda}^{m}:-\Lambda \leq m \leq \Lambda\right\}
$$

and

$$
\mathcal{H}_{\Lambda, 3}:=\operatorname{span}\left\{\psi_{l}^{m}: 0 \leq I \leq \Lambda ;-I \leq m \leq I\right\},
$$

respectively.

Comparison with Perelomov \&3 Madore

More precisely, we will compare the spatial dispersion $(\Delta x)^{2}$ of the Madore fuzzy sphere with the our $(\Delta x)^{2}$ when the representation spaces are

$$
V_{\Lambda}:=\operatorname{span}\left\{Y_{\Lambda}^{m}:-\Lambda \leq m \leq \Lambda\right\}
$$

and

$$
\mathcal{H}_{\Lambda, 3}:=\operatorname{span}\left\{\psi_{l}^{m}: 0 \leq I \leq \Lambda ;-I \leq m \leq I\right\},
$$

respectively.
So, it's obvious that (definitively)

$$
(\Delta \boldsymbol{x})_{\min }^{2} \leq(\Delta \boldsymbol{x})_{\tilde{\chi}}^{2}<(\Delta \boldsymbol{x})_{\min }^{2}
$$

Fourth target

If $D=2$ and we adopt $T=\pi_{\Lambda, 2}$ and as G not $S U(2)$ but its subgroup $G=U(1)$; hence $\mathcal{H}_{\Lambda, 2}$ carries a reducible representation of G, and COMPLETENESS (RESOLUTION OF UNITY) is not automatic.

Fourth target

If $D=2$ and we adopt $T=\pi_{\Lambda, 2}$ and as G not $S U(2)$ but its subgroup $G=U(1)$; hence $\mathcal{H}_{\Lambda, 2}$ carries a reducible representation of G, and COMPLETENESS (RESOLUTION OF UNITY) is not automatic.
One can prove that if $\phi=\sum_{m=-\Lambda}^{\Lambda} \phi_{m} \psi_{m},\|\phi\|=1$ and

$$
\phi_{\alpha}:=e^{i \alpha L} \phi=\sum_{m=-\Lambda}^{\Lambda} e^{i \alpha m} \phi_{m} \psi_{m}, \quad P_{\alpha}:=\phi_{\alpha}\left\langle\phi_{\alpha}, \cdot\right\rangle=\left|\phi_{\alpha}\right\rangle\left\langle\phi_{\alpha}\right|
$$

$\left(\phi_{0} \equiv \phi\right) ;$

Fourth target

If $D=2$ and we adopt $T=\pi_{\Lambda, 2}$ and as G not $S U(2)$ but its subgroup $G=U(1)$; hence $\mathcal{H}_{\Lambda, 2}$ carries a reducible representation of G, and COMPLETENESS (RESOLUTION OF UNITY) is not automatic.
One can prove that if $\phi=\sum_{m=-\Lambda}^{\Lambda} \phi_{m} \psi_{m},\|\phi\|=1$ and

$$
\phi_{\alpha}:=e^{i \alpha L} \phi=\sum_{m=-\Lambda}^{\Lambda} e^{i \alpha m} \phi_{m} \psi_{m}, \quad P_{\alpha}:=\phi_{\alpha}\left\langle\phi_{\alpha}, \cdot\right\rangle=\left|\phi_{\alpha}\right\rangle\left\langle\phi_{\alpha}\right|
$$

$\left(\phi_{0} \equiv \phi\right)$; then defining $B:=\int_{0}^{2 \pi} d \alpha P_{\alpha}$ it turns out that $B \propto I$ if and only if $\left|\phi_{m}\right|$ is independent on n, which implies $\left|\phi_{m}\right|=1 /(2 \Lambda+1)$, but in this case

$$
(\Delta x)_{\psi}^{2}=\frac{1}{2 \Lambda}+O\left(\frac{1}{\Lambda^{2}}\right)
$$

Fourth target

If $D=2$ and we adopt $T=\pi_{\Lambda, 2}$ and as G not $S U(2)$ but its subgroup $G=U(1)$; hence $\mathcal{H}_{\Lambda, 2}$ carries a reducible representation of G, and COMPLETENESS (RESOLUTION OF UNITY) is not automatic.
One can prove that if $\phi=\sum_{m=-\Lambda}^{\Lambda} \phi_{m} \psi_{m},\|\phi\|=1$ and

$$
\phi_{\alpha}:=e^{i \alpha L} \phi=\sum_{m=-\Lambda}^{\Lambda} e^{i \alpha m} \phi_{m} \psi_{m}, \quad P_{\alpha}:=\phi_{\alpha}\left\langle\phi_{\alpha}, \cdot\right\rangle=\left|\phi_{\alpha}\right\rangle\left\langle\phi_{\alpha}\right|
$$

$\left(\phi_{0} \equiv \phi\right)$; then defining $B:=\int_{0}^{2 \pi} d \alpha P_{\alpha}$ it turns out that $B \propto I$ if and only if $\left|\phi_{m}\right|$ is independent on n, which implies $\left|\phi_{m}\right|=1 /(2 \Lambda+1)$, but in this case

$$
(\Delta x)_{\psi}^{2}=\frac{1}{2 \Lambda}+O\left(\frac{1}{\Lambda^{2}}\right)
$$

this goes to zero as $\Lambda \rightarrow \infty$, but more slowly than the spatial dispersion of $\widetilde{\widetilde{\chi}}$

Fourth target

If $D=2$ and we adopt $T=\pi_{\Lambda, 2}$ and as G not $S U(2)$ but its subgroup $G=U(1)$; hence $\mathcal{H}_{\Lambda, 2}$ carries a reducible representation of G, and COMPLETENESS (RESOLUTION OF UNITY) is not automatic.
One can prove that if $\phi=\sum_{m=-\Lambda}^{\Lambda} \phi_{m} \psi_{m},\|\phi\|=1$ and

$$
\phi_{\alpha}:=e^{i \alpha L} \phi=\sum_{m=-\Lambda}^{\Lambda} e^{i \alpha m} \phi_{m} \psi_{m}, \quad P_{\alpha}:=\phi_{\alpha}\left\langle\phi_{\alpha}, \cdot\right\rangle=\left|\phi_{\alpha}\right\rangle\left\langle\phi_{\alpha}\right|
$$

$\left(\phi_{0} \equiv \phi\right)$; then defining $B:=\int_{0}^{2 \pi} d \alpha P_{\alpha}$ it turns out that $B \propto I$ if and only if $\left|\phi_{m}\right|$ is independent on n, which implies $\left|\phi_{m}\right|=1 /(2 \Lambda+1)$, but in this case

$$
(\Delta x)_{\psi}^{2}=\frac{1}{2 \Lambda}+O\left(\frac{1}{\Lambda^{2}}\right)
$$

this goes to zero as $\Lambda \rightarrow \infty$, but more slowly than the spatial dispersion of $\widetilde{\chi}$ and we proved that the same applies for $D=3$.

In $D=3$ we choose G not $S O(4)$ but its subgroup $G=S O(3)$, and $T=\pi_{\Lambda}$. The $\left(\mathcal{H}_{\Lambda}, \pi_{\Lambda}\right)$ is a reducible representation of G, more precisely the direct sum of the irreducible representations $\left(V_{l}, \pi_{l}\right), I=0, \ldots, \Lambda$, therefore completeness and resolution of unity are not automatic.

In $D=3$ we choose G not $S O(4)$ but its subgroup $G=S O(3)$, and $T=\pi_{\Lambda}$. The $\left(\mathcal{H}_{\Lambda}, \pi_{\Lambda}\right)$ is a reducible representation of G, more precisely the direct sum of the irreducible representations $\left(V_{l}, \pi_{I}\right), I=0, \ldots, \Lambda$, therefore completeness and resolution of unity are not automatic. Consider for simplicity a unit vector of the form $\phi=\sum_{l=0}^{\wedge} \phi_{l} \boldsymbol{\psi}_{l}^{l}$, and for $g \in G$ let

$$
\begin{equation*}
\phi_{g}:=\pi_{\Lambda}(g) \phi, \quad P_{g}:=\phi_{g}\left\langle\phi_{g}, \cdot\right\rangle \tag{18}
\end{equation*}
$$

$\left(\phi_{I} \equiv \phi\right)$. The system $A:=\left\{\phi_{g}\right\}_{g \in G}$ is complete provided $\phi_{I} \neq 0$ for all I (then it is also overcomplete). Defining
$B:=\int_{S O(3)} d \mu(g) P_{g}$ one finds that B is proportional to the identity only if $\left|\phi_{I}\right|^{2}$ is independent of I and therefore (since $\|\phi\|=1)$ if $\left|\phi_{l}\right|^{2}=1 /(\Lambda+1)$. Setting $\phi_{I}=e^{i \beta_{l}} / \sqrt{\Lambda+1}\left(\beta_{I} \in \mathbb{R}\right)$ we find the following resolutions of the identity, parametrized by $\beta \in(\mathbb{R} / 2 \pi \mathbb{Z})^{\Lambda+1}$:

$$
I=\frac{\Lambda+1}{2 \pi^{3}} \int_{S O(3)} d \mu(g) P_{g}^{\beta}, P_{g}^{\beta}:=\psi_{g}^{\beta}\left\langle\psi_{g}^{\beta}, \cdot\right\rangle, \psi_{g}^{\beta}:=\sum_{m=-\Lambda}^{\Lambda} \frac{e^{i \beta_{l}}}{\sqrt{\Lambda+1}} \pi_{\Lambda}(g) \psi_{l}^{\prime}
$$

Appendix

Another possibility is to minimize the variance of $\pi_{\Lambda, 2}\left[\boldsymbol{L}^{2}\right]$, but one can easily show that in this case the "coherent states" (the ones minimizing that variance) are ψ_{Λ} and $\psi_{-\Lambda}$, which are not meaningful in the high energy limit $\Lambda \rightarrow+\infty$.

Appendix

Another possibility is to minimize the variance of $\pi_{\Lambda, 2}\left[\boldsymbol{L}^{2}\right]$, but one can easily show that in this case the "coherent states" (the ones minimizing that variance) are ψ_{Λ} and $\psi_{-\Lambda}$, which are not meaningful in the high energy limit $\Lambda \rightarrow+\infty$.

Incidentally, some authors consider also two definitions of sets of optimally localized states on the spin sphere alternative to the one adopted by Perelomov: the set of "intelligent states", that saturate the uncertainty relation $\Delta L_{1} \Delta L_{2} \geq\left|\left\langle L_{3}\right\rangle\right| / 2$, and the set of "minimum uncertainty states", for which $\Delta L_{1} \Delta L_{2}$ has a local minimum (note that then in general $\Delta L_{1} \Delta L_{3}, \Delta L_{2} \Delta L_{3}$ are not minimized). But neither one is invariant under arbitrary rotation, in contrast with the definition of Perelomov and of the present work; one can easily show that these states are "fewer" than the points of S^{2}, i.e cannot be put in one-to-one correspondence with the points of S^{2}, but just of a finite number of lines on S^{2}.

