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PIN GEOMETRY

Q all fundamental fermions are described by spinor fields over a
4-dimensional Lorentzian manifold

@ spin geometry is seen through the existence of the Dirac o
operator constructed from torsion-free spin connection

@ spinors are sections of a complex vector bundle with a
representation of the Clifford algebra

@ the structure of the spinor bundle and the Dirac operator
encodes the chirality and Lorentzian structure

the spinor bundle of fermions is an irreducible representation of -
the chiral Clifford algebra (and that can be encoded in saying that '
tbe bundle establishes the Morita equivalence between functions =
and Clifford algebra). o
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EFINITION A GEOMETRY (ALGEBRAIC WAY)

Algebra A, its falthful representation = on a Hilbert space 7—[ a
selfadjoint operator D, satisfying several conditions.

O make sure that D s a first-order operator

@ choose D to be nondegenerate

@ guarantee that D is a differential operator :
Q try to define the dlmenS|on & ..+ make sure that yo

compute something




AIgebra A, its faithful representatlon o on a Hilbert space 7—[ a
selfadjoint operator D, satisfying several conditions.

@ make sure that D is a first-order operator

@ choose D to be nondegenerate,

@ guarantee that D is a differential operator

Q try to define the dlmenS|on & ...+ make sure that you can

compute somethmg




CTRAL TRIPLES

£

= 7;' Algebra A, its faithful representation = on a Hilbert space #, a
~  selfadjoint operator D, satisfying several conditions.

@ make sure that D is a first-order operator
@ choose D to be nondegenerate,
@ guarantee that D is a differential operator

Q try to define the dimension & ...+ make sure that you can
compute something

- If you have a spin manifold then the Dirac operator acting on the
sections of the spinor bundle gives you geometry in the above sense.

o S oo ; e = S i

Another natural triple is (C>(M), L2(Q(M)), d + d*).
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ESTING THE EUCLIDEAN SM..

0' Each fermion is described by a spectral triple (spinor + Dirac)
@ the collection of all partlcles W|th the interactions corresponds to
a finite spectral triple
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@ Each fermion is described by a spectral triple (spinor + Dirac)

@ the collection of all particles with the interactions corresponds to
a finite spectral triple

@ the full geometry of SM is (almost) a product geometry
@ the fluctuations of the Dirac operator are gauge fields
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e

AF = (M1 69 M1 o Mz)(4g) ® (M1 o Ms)(4g)
with first My identified W|th each other'

(zaws h)(“g) ® (z ® m)<49)




where where D), Dy € M4g are posmve mass matrlces fo
- quarks, respectlvely




QUESTION

_What is the algebra generated by Dr and AF and what is |ts
commutant ? If the commutant of CI(Ag, Dr) is |somorph|c to Ar then
SM correponds to fundamental spmors BUT..




SM AS GEOMETRY g
If the algebra generated by Ar, Dr is

MAQ'@M‘?Q@M?Q@M;Q




SM AS GEOMETRY B
- If the algebra generated by AF, DF is

' then the geometry is self-dual (commutant of the Cllfford algebra is
the Cllfford algebra |tself) ;

Yes, if there is nontrivial mixing of the neutrino flavors and nontnvral :
mixing of the quarks and all fermion (bare) masses are nonzero and
dfifferent from each other then the SM satlsfles the Hodge duallty




HE DETAILS

g In this case the various T’s are just complex numbers and so the D,
-~ and D, matrices are just 4 x 4 complex matrices acting on the spaces
~ of leptons and quarks, where T, is the electron mass and T, is the
- neutrino mass (and similarly for Dy).
~_ Since Clp(A) contains MY & ML), the commutant Clp(A)Y of Clp(A) =
~ must contain My & M), and, if the Hodge duality is satisfied, so must =
_ CIp(A). However, Clp(A) contains M\* & MS*) and two algebras
- generated respectively by M; & M; & M, and D;, and
* (My & My & My)® and D). Thus the only possibility that the Hodge
. condition holds is when these two algebras are M, and IVI(S),
respectively. This happens only when independently all

- generate M,. It is easy to notice that sufficient and necessary
condition for this is that all four masses T'’s are different from zero.

zowdhe M &M &M, and Dj, as wellas z& w & hand Dg, each



‘ LEPTONS

- We start with leptons and check whether the algebra generated by
Ay, Dy is a full matrix algebra. A general matrix that commutes with A,
has a form P; & P, & P3, where Py, P> € Mgy and

] P3 =10Pye M ® Mg. If |t commutes with D, then:_

Py re g P PoTe=TePs,
PP Pyts Py

From these equations we immediately infer that P; and P; must
commute with T, T (note that since both T matrices are unitarily
similar to diagonal matrix then they are normal) whereas P2 and P;
must commute with T, T*




- Therefore, only if both T, and T, are invertible and the pair T, T and = -
- ToT}; generate the full matrix algebra M, it follows consequently that -
- Py and P> must be equal to P3, and be proportional to the identity. £
~ Similar arguments will also hold for the quarks: it suffices (and is
- necessary) that the two matrices T,7T; and T47; generate the full
~ matrix algebra M, and that they are invertible to assure that the
algebra generated by Ay, D, is a full matrix algebra.




HREE GENERATIONS.

- When two hermitian matrices, A, B in M3(C) generate a full matrix
~ algebra ?
~ Burnside (1905): they do not share a common eigenvector (the s
- theorem states that there is no common invariant subspace but since
- the matrices are hermitian if there exists an invariant subspace its '_ :
- complement is also invariant and hence there would necessarily exist - ’_'h
~ an invariant subspace of dimension 1). .

I, we assume that all eigenvalues of A are different from each other
~ then we only need to check the matrix elements of U in the chosen
basis, in which A is diagonal. If no matrix element of U is of modulus
- 1 (while at the same time other matrix elements in the same row and
_ in the same column are 0) then U does not map one of the basis
vectors to another one. Equivalently, one can reformulate the
- condition in the following way: no permutation of the basis leads to _
. the block diagonal matrix of U with rank of the largest block strictly =
less than 3.




THE PHYSICAL PARAMETERS

Ci2Ciz 812013 s136~"°
U= [—81263 = C12$233139 C12Co3 — S12523513€"° 523013 | 5
S12523 — C120233136 = —C1a823 — 3120233136 - C23C43

where s; = sin¢; and c,, = Cos 6,, The foIIowmg Jarlskog mvarlant

i ..
ke 3 cos(913) sin(2€13),_sin(_20_23) sin(2«_9_1' :

provides for the neutrino mixing rarige (with 10 errbr):
By 0329 + 0.0007,

that proves indeed that not only all the angles are non- vanlshlng but
all neutrino masses are different from each other.




: Here the usual convention in physics is different with "up” sector
- diagonal and "down" sector mixed. The bare up and down quark
- massed are different from each other within the errors so the only
- thing to check is the mixing matrix U. Using again the same type of
parametrization of the matrix by three angles and the phases, we can
: just look at the experimental value of the Jarlskog invariant Jg’ca,’;,
measured with 1o

+0.21)
g = (3'040.20) 10°°,

‘_::'_'_' which is sufficient to ascertain that all angles are indeed nonzero and
that implies the partial condition to Hodge duality.

Note that unlike in the leptonic case the angles are very small, which

means that the matrix U is very close to the diagonal unit matrix.

. Nevertheless within the experimental errors we see that the quark

_ mixing is also maximal and the Clifford algebra generated in the
quark sector is the full matrix algebra Mg as well.




HE [ ORENTZIAN SPECTRAL TRIPLES -~~~

A real pseudo-Riemannian spectral triple of signature (p, g) is a
system (A, 7, H, D, J,~, ) where A is an involutive unital algebra, =« -
- its faithful «-representation on an Hilbert space #. First, for even p+q .
- there exists a Z,-grading 7' = ,~% = 1 commuting with the
.. representation of A, J is an antilinear isometry and for all a, b € A we =
_ have [Jr(a*)J~ ", 7(b)] = 0. Furthermore, there exists an additional
grading 5 = 3, 82 = 1 also commuting with the representation of A,
- which defines the Krein structure on the Hilbert space. The latter is
~_ an indefinite bilinear form defined as (¢, 1')s = (¢, 8¥), where (-,-) is
the usual positive definite scalar product on the Hilbert space. As a
- last requirement, we postulate the existence of a (possibly
- unbounded) densely defined operator D, which is 3-self-adjoint,i.e.
. D' = (—1)PBDg and such that [D, 7(a)] is bounded for every ac A, is .=
-~ odd with respect to y-grading: Dy = —+D.




“THE EUCLIDEAN PART OF FST - =

Define D, = (D + D') and D_ = ;(D — D'). Both D, are by
definition self-adjoint and we obtain a pair of Riemannian real spectral
triples, A M B, J o) e B

I




Defme D+ = 2(DjL DT) and D_ ’(D D). Both D, areby
definition self-adjoint and we obtam a panr of Riemannian real spectral
triples, (A e He B, ).
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MAIN FEATURES OE FS
Q@ The classification of Dlrac operator is almost the sa_
Riemannian case.
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MAIN FEATURES OEFST.

Q@ The classification of Dlrac operator is almost the same as |n the
Riemannian case.
@ The existence of 5 and the time- orlentablllty puts further
: restrictions.




TE LORENTZIAN TRIPLES

i S

~ Define D, = 4(D+ Di)and D_ = L(D— D'). Both D. are by
~_ definition self-adjoint and we obtain a pair of Riemannian real spectral
~ triples, (A, 7, H, Dy, J, 7).

@ The classification of Dirac operator is almost the same as in the
Riemannian case.

@ The existence of g and the time-orientability puts further
restrictions.

@ If for an even spectral triple grading is scalar on at least one
subspace Hj then there is no pseudo-Riemannian triple with p
odd.




TE LORENTZIANTRIPLES e

P (o

~ Define D, = }(D+ Df)and D_ = £(D— D). Both D are by _
~_ definition self-adjoint and we obtain a pair of Riemannian real spectral
W = triples, (A, 7,1, D1, J, ).

@ The classification of Dirac operator is almost the same as in the
Riemannian case.

@ The existence of g and the time-orientability puts further
restrictions.

@ If for an even spectral triple grading is scalar on at least one
subspace Hj then there is no pseudo-Riemannian triple with p
odd.

@ The Euclidean part of ST is a finite spectral triple BUT with an
additional symmetry $ of the Dirac operator.




The flmte spectra]—trlple of the Standard Model |é conS|stent W|th it
. being the Euclidean part of the pseudo Riemannian tnple_wnth ﬁ
being:

ﬂ—ﬁp(‘l 1 )JF'7TF(1,-1,—1)J,_?.,
where/\ h,me M1 @MZ@MS




LEPTON NUMBER SYMMETRY | ROM LORENTZIAN

~ The finite spectral triple of the Standard Model is consistent with it
. being the Euclidean part of the pseudo-Riemannian triple with 3

- being:

: 8=l 1 Dere(1,1, - 1)d2,
~ where Nhome M @& M @ Ms.

Yes, it is the only possible 0-cycle (3) for a real spectral triple over the o
- Standard Model that can be interpreted shadow of a
pseudo-Riemannian structure, which additionally allows Hodge
duality is the one with 3 = 7(1,1, —1)Jx(1,1, =1)J".

This results in the symmetry that physically can be interpreted as
- lepton number conservation.
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