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PHYSICS AND GEOMETRY



SPIN GEOMETRY

GEOMETRY OF FUNDAMENTAL PARTICLES

1 all fundamental fermions are described by spinor fields over a
4-dimensional Lorentzian manifold

2 spin geometry is seen through the existence of the Dirac
operator constructed from torsion-free spin connection

3 spinors are sections of a complex vector bundle with a
representation of the Clifford algebra

4 the structure of the spinor bundle and the Dirac operator
encodes the chirality and Lorentzian structure

5 the spinor bundle of fermions is an irreducible representation of
the chiral Clifford algebra (and that can be encoded in saying that
tbe bundle establishes the Morita equivalence between functions
and Clifford algebra).
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SPECTRAL TRIPLES

DEFINITION: A GEOMETRY (ALGEBRAIC WAY)
Algebra A, its faithful representation π on a Hilbert space H, a
selfadjoint operator D, satisfying several conditions.

1 make sure that D is a first-order operator

2 choose D to be nondegenerate,
3 guarantee that D is a differential operator
4 try to define the dimension & ...+ make sure that you can

compute something

THEOREM [CONNES]
If you have a spin manifold then the Dirac operator acting on the
sections of the spinor bundle gives you geometry in the above sense.

REMARK

Another natural triple is (C∞(M),L2(Ω(M)),d + d∗).
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THE STRUCTURE OF THE STANDARD MODEL

TESTING THE EUCLIDEAN SM

1 Each fermion is described by a spectral triple (spinor + Dirac)
2 the collection of all particles with the interactions corresponds to

a finite spectral triple
3 the full geometry of SM is (almost) a product geometry
4 the fluctuations of the Dirac operator are gauge fields

FINITE SPECTRAL TRIPLE OF THE SM
The “almost commutative” geometry is described by the Hilbert space

HF = C96 =: Hf ⊗ C3,


νR u1

R u2
R u3

R

eR d1
R d2

R d3
R

νL u1
L u2

L u3
L

eL d1
L d2

L d3
L



ν̄R ēR ν̄L ēL

ū1
R d̄ 1

R ū1
L d̄ 1

L

ū2
R d̄ 2

R ū2
L d̄ 2

L

ū3
R d̄ 3

R ū3
L d̄ 3

L





THE STRUCTURE OF THE STANDARD MODEL

TESTING THE EUCLIDEAN SM

1 Each fermion is described by a spectral triple (spinor + Dirac)

2 the collection of all particles with the interactions corresponds to
a finite spectral triple

3 the full geometry of SM is (almost) a product geometry
4 the fluctuations of the Dirac operator are gauge fields

FINITE SPECTRAL TRIPLE OF THE SM
The “almost commutative” geometry is described by the Hilbert space

HF = C96 =: Hf ⊗ C3,


νR u1

R u2
R u3

R

eR d1
R d2

R d3
R

νL u1
L u2

L u3
L

eL d1
L d2

L d3
L



ν̄R ēR ν̄L ēL
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R ū1
L d̄ 1

L

ū2
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THE SPECTRAL TRIPLE OF THE SM

THE ALGEBRA FOR g GENERATIONS

AF = (M1 ⊕M1 ⊕M2)(4g) ⊕ (M1 ⊕M3)(4g),

with first M1 identified with each other:

(z ⊕ w ⊕ h)(4g) ⊕ (z ⊕m)(4g).

THE DIRAC OPERATOR

D̃F =
(

Dl ⊕ D(3)
q

)
⊕ 0(16g) ,
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THE DIRAC OPERATOR AND HODGE DUALITY

THE DIRAC OPERATOR

Dl =


0 0
0 0

Υν 0
0 Υe

Υ∗ν 0
0 Υ∗e

0 0
0 0

 , Dq =


0 0
0 0

Υu 0
0 Υd

Υ∗u 0
0 Υd∗

0 0
0 0

 ,

where where Dl ,Dq ∈ M4g are positive mass matrices for leptons and
quarks, respectively.

QUESTION

What is the algebra generated by D̃F and AF and what is its
commutant ? If the commutant of Cl(AF ,DF ) is isomorphic to AF then
SM correponds to fundamental spinors. BUT...
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THE HODGE DUALITY

SM AS GEOMETRY

If the algebra generated by AF , D̃F is

M4g ⊕M3
4g ⊕M4g

1 ⊕M4g
3

then the geometry is self-dual (commutant of the Clifford algebra is
the Clifford algebra itself)

DOES IT HAPPEN IN REALITY?
Yes, if there is nontrivial mixing of the neutrino flavors and nontrivial
mixing of the quarks and all fermion (bare) masses are nonzero and
dfifferent from each other then the SM satisfies the Hodge duality.
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THE DETAILS

ONE GENERATION

In this case the various Υ’s are just complex numbers and so the Dl
and Dq matrices are just 4× 4 complex matrices acting on the spaces
of leptons and quarks, where Υe is the electron mass and Υν is the
neutrino mass (and similarly for Dq).
Since ClD(A) contains M(4)

1 ⊕M(4)
3 , the commutant ClD(A)′ of ClD(A)

must contain M4 ⊕M(3)
4 , and, if the Hodge duality is satisfied, so must

ClD(A). However, ClD(A) contains M(4)
1 ⊕M(4)

3 and two algebras
generated respectively by M1 ⊕M1 ⊕M2 and Dl , and
(M1 ⊕M1 ⊕M2)(3) and D(3)

q . Thus the only possibility that the Hodge
condition holds is when these two algebras are M4 and M(3)

4 ,
respectively. This happens only when independently all
z ⊕w ⊕ h ∈ M1 ⊕M1 ⊕M2 and Dl , as well as z ⊕w ⊕ h and Dq , each
generate M4. It is easy to notice that sufficient and necessary
condition for this is that all four masses Υ’s are different from zero.



THREE GENERATIONS

LEPTONS

We start with leptons and check whether the algebra generated by
Al ,Dl is a full matrix algebra. A general matrix that commutes with Al
has a form P1 ⊕ P2 ⊕ P̃3, where P1,P2 ∈ Mg and
P̃3 = 1⊗ P3 ∈ M2 ⊗Mg . If it commutes with Dl then:

P1Υν = ΥνP3, P2Υe = ΥeP3,

P3Υ∗ν = Υ∗νP1, P3Υ∗e = Υ∗eP1.

From these equations we immediately infer that P1 and P3 must
commute with ΥνΥ∗ν (note that since both Υ matrices are unitarily
similar to diagonal matrix then they are normal) whereas P2 and P3
must commute with ΥeΥ∗e.



THREE GENERATIONS

...AND QUARKS

Therefore, only if both Υν and Υe are invertible and the pair ΥνΥ∗ν and
ΥeΥ∗e generate the full matrix algebra Mg it follows consequently that
P1 and P2 must be equal to P3, and be proportional to the identity.
Similar arguments will also hold for the quarks: it suffices (and is
necessary) that the two matrices ΥuΥ∗u and Υd Υ∗d generate the full
matrix algebra Mg and that they are invertible to assure that the
algebra generated by Aq ,Dq is a full matrix algebra.



THREE GENERATIONS

MASSES

When two hermitian matrices, A,B in M3(C) generate a full matrix
algebra ?
Burnside (1905): they do not share a common eigenvector (the
theorem states that there is no common invariant subspace but since
the matrices are hermitian if there exists an invariant subspace its
complement is also invariant and hence there would necessarily exist
an invariant subspace of dimension 1).

If, we assume that all eigenvalues of A are different from each other
then we only need to check the matrix elements of U in the chosen
basis, in which A is diagonal. If no matrix element of U is of modulus
1 (while at the same time other matrix elements in the same row and
in the same column are 0) then U does not map one of the basis
vectors to another one. Equivalently, one can reformulate the
condition in the following way: no permutation of the basis leads to
the block diagonal matrix of U with rank of the largest block strictly
less than 3.



THE PHYSICAL PARAMETERS

U =

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

 ,
where sij = sin θij and cij = cos θij . The following Jarlskog invariant:

Jmax
νCP =

1
8

cos(θ13) sin(2θ13) sin(2θ23) sin(2θ12),

provides for the neutrino mixing range (with 1σ error):

Jmax
νCP = 0.0329± 0.0007,

that proves indeed that not only all the angles are non-vanishing but
all neutrino masses are different from each other.



THE PHYSICAL PARAMETERS:QUARKS

Here the usual convention in physics is different with "up" sector
diagonal and "down" sector mixed. The bare up and down quark
massed are different from each other within the errors so the only
thing to check is the mixing matrix U. Using again the same type of
parametrization of the matrix by three angles and the phases, we can
just look at the experimental value of the Jarlskog invariant Jmax

qCP ,
measured with 1σ:

Jmax
qCP =

(
3.04

+0.21
−0.20

)
10−5,

which is sufficient to ascertain that all angles are indeed nonzero and
that implies the partial condition to Hodge duality.

Note that unlike in the leptonic case the angles are very small, which
means that the matrix U is very close to the diagonal unit matrix.
Nevertheless within the experimental errors we see that the quark
mixing is also maximal and the Clifford algebra generated in the
quark sector is the full matrix algebra M4g as well.



THE LORENTZIAN SPECTRAL TRIPLES

THE DEFINITION

A real pseudo-Riemannian spectral triple of signature (p,q) is a
system (A, π,H,D, J, γ, β) where A is an involutive unital algebra, π
its faithful ∗-representation on an Hilbert space H. First, for even p+q
there exists a Z2-grading γ† = γ, γ2 = 1 commuting with the
representation of A, J is an antilinear isometry and for all a,b ∈ A we
have [Jπ(a∗)J−1, π(b)] = 0. Furthermore, there exists an additional
grading β = β†, β2 = 1 also commuting with the representation of A,
which defines the Krein structure on the Hilbert space. The latter is
an indefinite bilinear form defined as (φ, ψ)β = (φ, βψ), where (·, ·) is
the usual positive definite scalar product on the Hilbert space. As a
last requirement, we postulate the existence of a (possibly
unbounded) densely defined operator D, which is β-self-adjoint, i.e.
D† = (−1)pβDβ and such that [D, π(a)] is bounded for every a ∈ A, is
odd with respect to γ-grading: Dγ = −γD.



FINITE LORENTZIAN TRIPLES

THE EUCLIDEAN PART OF FST
Define D+ = 1

2 (D + D†) and D− = i
2 (D − D†). Both D± are by

definition self-adjoint and we obtain a pair of Riemannian real spectral
triples, (A, π,H,D±, J, γ).

MAIN FEATURES OF FST

1 The classification of Dirac operator is almost the same as in the
Riemannian case.

2 The existence of β and the time-orientability puts further
restrictions.

3 If for an even spectral triple grading is scalar on at least one
subspace Hij then there is no pseudo-Riemannian triple with p
odd.

4 The Euclidean part of ST is a finite spectral triple BUT with an
additional symmetry β of the Dirac operator.
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THE LEPTON NUMBER SYMMETRY FROM LORENTZIAN

STRUCTURE

THE PSEUDO-RIEMANNIAN STRUCTURE

The finite spectral triple of the Standard Model is consistent with it
being the Euclidean part of the pseudo-Riemannian triple with β
being:

β = πF (1,1,−1)JFπF (1,1,−1)J−1
F ,

where λ,h,m ∈ M1 ⊕M2 ⊕M3.

IS THIS UNIQUE ?
Yes, it is the only possible 0-cycle (β) for a real spectral triple over the
Standard Model that can be interpreted shadow of a
pseudo-Riemannian structure, which additionally allows Hodge
duality is the one with β = π(1,1,−1)Jπ(1,1,−1)J−1.
This results in the symmetry that physically can be interpreted as
lepton number conservation.
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CONCLUSIONS

1 The finite structure (particle contents) of the Standard Model has
some interesting geometric features

2 Particles correspond rather to forms than spinors
3 Hodge duality is satisfied for generations but requires mixing of

flavors both in the leptonic as well as quark sector.
4 The model looks like a Euclidean restriction of the

pseudo-Riemannian one and the resulting symmetry preserves
the lepton number and prevents breaking of the SU(3) symmetry
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