Poisson-Lie T-duality and generalized geometry

Pavol Ševera

Joint work with Fridrich Valach

What is Poisson-Lie T-duality? [Klimčík, Š. 1995]

T-duality

Two different spacetimes $M_{1,2}$ can be equivalent from the string theory perspective Requires an action of U(1) (or of a torus) on M_1 by isometries

Poisson-Lie T-duality

- A non-Abelian generalization (symmetry is hidden, no Killing vector fields)
- M_1 and M_2 give isomorphic Hamiltonian systems (up to finitely many degrees of freedom)

Courant algebroids, or "generalized geometry" [Liu, Weinstein, Xu 1997]

Courant algebroid: vector bundle $E \to M$, symmetric pairing \langle , \rangle anchor map $\rho : E \to TM$, bracket $[,] : \Gamma(E) \times \Gamma(E) \to \Gamma(E)$ such that $(\forall s, t, u \in \Gamma(E))$

$$[s, [t, u]] = [[s, t], u] + [t, [s, u]]$$

$$\rho(s)\langle t, u \rangle = \langle [s, t], u \rangle + \langle t, [s, u] \rangle$$

$$\langle s, [t, t] \rangle = \langle [s, t], t \rangle.$$

Examples

- Lie algebras with invariant symmetric pairing (M = point)
- exact CAs (classified by H³(M, ℝ))

$$0 \to T^*M \xrightarrow{\rho^t} E \xrightarrow{\rho} TM \to 0$$

2d $\sigma\text{-models}$ and generalized metrics

2d σ -model

Ingredients: (M, g, H): g a Riemannian metric, $H \in \Omega^3(M)_{closed}$ Σ a surface with a Lorentzian metric

$$S(f) = \int_{\Sigma} g(\partial_{+}f, \partial_{-}f) + \int_{Y} f^{*}H \qquad (f: \Sigma \to M, \ \partial Y = \Sigma)$$

Generalized metric in a CA $E \rightarrow M$: a subbundle $V_+ \subset E$, maximally positive-definite w.r.t. \langle, \rangle

Observation

(M, g, H) is the same as a generalized metric in an *exact CA* $E \rightarrow M$

CAs and Hamiltonian systems

- A CA $E \rightarrow M \rightsquigarrow$ a symplectic manifold $L_{CA}E$
- A generalized metric $V_+ \subset E \rightsquigarrow$ a function \mathcal{H}_{V_+} on $L_{CA}E$

If *E* is exact, we get the σ -model:

 $L_{CA}E \cong T^*(LM)$ (the phase space of the σ -model) \mathcal{H}_{V_+} = the Hamiltonian of the σ -model

Poisson-Lie T-duality

Backgrounds (M, g, H) of Poisson-Lie type

- a Courant algebroid $ilde{E}
 ightarrow ilde{M}$ (not exact), $ilde{V}_+ \subset ilde{E}$
- a surjective submersion $f: M o ilde{M}$
- a compatible exact CA structure on $E := f^* \tilde{E} \to M$ (not unique !)

pulled-back generalized metric: V₊ := f^{*} V₊ ⊂ E, gives rise to (g, H) on M

PL T-duality

If (M_1, g_1, H_1) and (M_2, g_2, H_2) are obtained by pulling back the same gen. metric $\tilde{V}_+ \subset \tilde{E}$ then the corresponding 2-dim σ -models are (almost) isomorphic as Hamiltonian systems

... because they are (almost) isomorphic to $(L_{CA}\tilde{E}, \mathcal{H}_{\tilde{V}_{\perp}})$

How to construct CA pullbacks

No spectators (i.e. $ilde{M} = ext{point}, \ ilde{E} = extsf{d}$ a Lie algebra, $ilde{V}_+ \subset extsf{d}$)

• $\mathfrak{g} \subset \mathfrak{d}$ a Lagrangian Lie subalgebra $(\mathfrak{g}^{\perp} = \mathfrak{g})$

- M = D/G, $E = \mathfrak{d} \times M$, the anchor given by the action of \mathfrak{d}
- (g, H) given by the gen. metric $ilde{V}_+ imes M \subset \mathfrak{d} imes M$

Different g's give PL-equivalent (M, g, H)'s

General \tilde{M} (= spectators)

- A principal *D*-bundle $P
 ightarrow ilde{M}$
- Vanishing 1st Pontryagin class: $\langle F, F \rangle / 2 = dC \ (C \in \Omega^3(\tilde{M}))$ gives a transitive CA $\tilde{E} \to \tilde{M}$

•
$$M = P/G$$

A better description: A multiplicative gerbe over D trivial on G, acting on a gerbe on P

"Quantum questions"

σ -models:

is PL T-duality compatible with the renormalization group flow?

$$\frac{d}{dt}g = \operatorname{Ric}$$

- looking for suitable Ric of generalized metrics

string theory:

other massless fields besides (g, H): dilaton, RR-fields, gauge fields. Do they make sense for arbitrary CAs? Is PL T-duality compatible with SUGRA equations?

Generalized Ricci flow

There is a (almost) natural flow of generalized metrics:

Generalized Ricci flow (of a generalized metric)

$$\frac{d}{dt}V_{+} = T_{V_{+}}: V_{+} \to V_{-} \qquad \langle T_{V_{+}}u, v \rangle = \mathsf{GRic}_{V_{+},\mathsf{div}}(u,v)$$

$$\mathsf{GRic}_{V_+,\mathsf{div}}(u,v) := \mathsf{div}[v,u]_+ - v \cdot \mathsf{div} \ u - \mathsf{Tr}_{V_+}[[\cdot,v]_-,u]_+$$

Here div : $\Gamma(E) \to C^{\infty}(M)$ is such that div(fu) = f div $u + \rho(u)f$, e.g. div $u := \mu^{-1} \mathcal{L}_{\rho(u)} \mu$ for a density μ [Alekseev,Xu 2001], [Garcia-Fernandes 2016]. Different choices of div give the same flows up to (inner) automorphisms of the CA.

Other definitions of GRic: [Coimbra, Strickland-Constable, Waldram 2011], [Garcia-Fernandez 2014], [Jurčo, Vysoký 2016] (using auxiliary data) PL T-duality is compatible with the renorm. group flow

- If E is exact, the GRicci flow is the renormalization group flow (Ricci flow) of (g, H)
- GRic is compatible with CA pullbacks
- Hence, Poisson-Lie T-duality is compatible with the renormalization group flow

String effective action

Generating functional (string effective action)

There is a natural Laplacian Δ_{V_+} acting on half-densities. The GRicci flow is the gradient flow of

$$S(V_+,\sigma) := -\frac{1}{2} \int_M \sigma \Delta_{V_+} \sigma$$

(for a fixed σ).

For exact CA, with $\sigma = e^{-\phi} \mu_g^{1/2}$ (V₊ \subset *E* corresponds to (g, H))

$$S(V_+,\sigma) = \int_M \left(\frac{1}{4}R - \frac{1}{8}H^2 + \|d\phi\|_g^2\right) e^{-2\phi}\mu_g$$

is the (bosonic) string effective action

For (suitable) transitive CAs it is the type I/heterotic SUGRA action [Garcia-Fernandez 2014]

Who is who in the case of a Lie algebra

$$E = \mathfrak{d}, \quad V_{+} \subset \mathfrak{d}$$

$$\mathsf{GRic}_{V_{+}}(u, v) = -\operatorname{Tr}_{V_{+}}[[\cdot, v]_{-}, u]_{+} = - u \xrightarrow{\oplus} v$$

$$\Delta_{V_{+}} = \frac{1}{6} \xrightarrow{\oplus} + \frac{1}{2} \xrightarrow{$$

In a general CA:

$$\Delta_{V_{+}} = 4\mathcal{L}_{\rho(e_{a})}\mathcal{L}_{\rho(e_{a})} + \frac{1}{6} \underbrace{(\textcircled{\oplus})}_{\oplus} + \frac{1}{2} \underbrace{(\textcircled{\oplus})}_{\oplus} + \underbrace{(\textcircled\oplus})_{\oplus} + \underbrace{(\textcircled\oplus)}_{\oplus} + \underbrace{(\textcircled\oplus)}_{\oplus} + \underbrace{(\oplus)}_{\oplus} + \underbrace{(\oplus)}_{\oplus$$

 e_a an ON basis of V_+

PL T-duality and string effective action

without RR fields

Generalized string background equations

EOM of S: $\Delta_{V_+}\sigma = 0$, $\operatorname{GRic}_{V_+,\sigma} = 0$ (exact CAs: bosonic string background equations; some transitive CAs: type I/heterotic)

PL T-duality setup with a dilaton

 $\tilde{V}_+ \subset \tilde{E}$, a half-density $\tilde{\sigma}$, $M \xrightarrow{f} \tilde{M}$, $E := f^*\tilde{E}$ a CA pullback and an invariant fibrewise half-density τ :

 $\mathcal{L}_{\rho(f^*u)}\tau = 0 \quad \forall u \in \Gamma(\tilde{E}) \qquad \left(\Rightarrow \ \Delta_{V_+}(\tau f^*\tilde{\sigma}) = \tau f^*\Delta_{\tilde{V}_+}\tilde{\sigma}\right)$

Example: $\tilde{E} = \mathfrak{d}$ ($\tilde{M} = pt$), M = D/G: τ exists iff G is unimodular

PL T-duality for string background equations $(\tilde{V}_+, \tilde{\sigma})$ satisfy the GSBE iff $(V_+ := f^* \tilde{V}_+, \sigma := \tau f^* \tilde{\sigma})$ do

Another approach: [Jurčo, Vysoký 2018]

Type II: RR fields and generating Dirac operators

Stolen from [Coimbra, Strickland-Constable, Waldram 2011] in the case of exact CAs

RR-field: an *E*-spinor half-density *F* which is *V*₊-self-dual and *DF* = 0 (*D* is the Dirac generating operator of [Alekseev, Xu 2001]) (**Pseudo)Action:** $S(V_+, \sigma, F) = -\frac{1}{2} \int (\sigma \Delta_{V_+} \sigma - \frac{1}{8}(F, *_{V_+} F))$

PL T-duality for type II SUGRA: $(\tilde{V}_+, \tilde{\sigma}, \tilde{F})$ is a solution of the EOM in \tilde{E} iff $(V_+ = f^*\tilde{V}_+, \sigma = \tau f^*\tilde{\sigma}, F = \tau f^*\tilde{F})$ is a solution in $E = f^*\tilde{E}$

(If no τ exists we get a solution of modified type II SUGRA of [Tseytlin, Wulff 2016], [Arutyunov, Frolov, Hoare, Roiban, Tseytlin 2016])

Back to the worldsheet perspective

AKSZ model [Alexandrov, Kontsevich, Schwarz, Zaboronsky 1997] (\mathcal{M}, ω, D) a dg symplectic manifold, deg $\omega = n$ Y a closed n + 1-dim manifold \Rightarrow Maps $(T[1]Y, \mathcal{M})$ is dg symplectic, deg $\omega' = -1$, $D' = \{S, \cdot\}$ S is the AKSZ action (an n + 1-dim TFT) (S satisfies the classical master equation $\{S, S\} = 0$; critical points of S = dg maps $T[1]Y \rightarrow \mathcal{M}$)

example: Chern-Simons

$$\mathcal{M} = \mathfrak{d}[1], \ \omega = \langle, \rangle, \ n = 2$$

 $S(A) = \int_{Y} \left(\frac{1}{2}\langle A, dA \rangle + \frac{1}{6}\langle [A, A], A \rangle \right)$
 $A \in \Omega(\Sigma, \mathfrak{d})[1] = Maps(T[1]Y, \mathfrak{d}[1])$

AKSZ for manifolds with a boundary

requires a boundary condition:

a dg Lagrangian submanifold $\Lambda \subset Maps(T[1]\partial Y, \mathcal{M})$ $\Rightarrow Maps(T[1]Y, \mathcal{M})_{\Lambda} \subset Maps(T[1]Y, \mathcal{M})$ is dg symplectic

Our setup: n = 2, \mathcal{M} equivalent to a CA E $\Sigma = \partial Y$ with a Lorentzian metric A gen. metric $V_+ \subset E$ produces a $\Lambda \subset Maps(T[1]\Sigma, \mathcal{M})$

Example: $E = \mathfrak{d}$ (Chern-Simons)

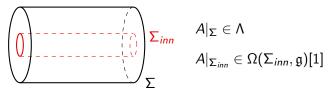
$$\Lambda = \left\{ A \in \Omega^1(\Sigma, \mathfrak{d}) \mid \ast A = RA \right\} \oplus \Omega^2(\Sigma, \mathfrak{d}) \subset \Omega(\Sigma, \mathfrak{d})$$

 $R:\mathfrak{d} o\mathfrak{d}$ the reflection wrt. V_+

If E is exact this 3d AKSZ model is the 2d σ -model given by V_+

Open problems, if we take the AKSZ approach seriously

- Is its renormalization group flow equal to the GRicci flow?
- Is there a "string theory" (or SUGRA) that would explain the "dilaton" σ , the action $S(V_+, \sigma)$, the "RR field" F etc. also in the case of non-exact CAs?
- To what extent is the PL T-duality an exact equivalence?
 E.g. the σ-model with the target D/G is the δ-Chern-Simons



- What is T-duality and what is its most general version? (A dg Lagrangian submanifold L ⊂ M₁ × M₂ compatible with the boundary conditions (generalized metrics)?)
- "T-duality" in higher dimensions and for (higher) gauge theories (n > 2)