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Braneworld localized gravity

The idea of formulating the cosmology of our universe on a brane
embedded in a higher-dimensional spacetime dates back, at least,
to Rubakov and Shaposhnikov. Phys. Lett. B125 (1983), 136
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Localizing gravity with an infinite transverse space
Attempts in a supergravity context to achieve a localization of
gravity on a brane embedded in an infinite transverse space were
made by Randall and Sundrum (RS II) Phys. Rev. Lett. 83 (1999) 4690 and by
Karch and Randall JHEP 0105 (2001) 008 using patched-together sections
of AdS5 space with a delta-function source at the joining surface.
This produced a “volcano potential” for the effective Schrödinger
problem in the direction transverse to the brane, giving rise to a
bound state concentrating gravity in the 4D directions.
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General problems with localization
Attempting to embed such models into a full
supergravity/string-theory context have proved to be problematic,
however. Splicing together sections of AdS5 is clearly an artificial
construction that does not make use of the natural D-brane or
NS-brane objects of string or supergravity theory.

These difficulties were studied more generally by Bachas and Estes
JHEP 1106 (2011) 005 , who traced the difficulty in obtaining localization
within a string or supergravity context to the behavior of the warp
factor for the 4D subspace. In the Karch-Randall spliced model,
one obtains a peak in the warp factor at the junction:
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Bachas & Estes no-go argument
Here’s why Bachas and Estes considered that one could not have a
natural localization of gravity on a brane with an infinite transverse
space. Consider fluctuations away from a smooth D-dim
background dŝ2 = e2A(z)(ηµν + hµν(x)ξ(z))dxµdxν + ĝab(z)dzadzb

where ξ(z) is the transverse wave function. Such a transverse wave
function with eigenvalue λ needs to satisfy the transverse wave
equation e−2A

√
ĝ
∂a(
√
ĝ e4Aĝab∂b)ξ = −λξ . The norm of ξ(z) is then

given by λ||ξ||2 = −
∫
dD−4zξ(∂a

√
ĝ e4Aĝab∂bξ).

If one assumes that one may integrate by parts without producing
a surface term, one would have λ||ξ||2 −→

∫
dD−4z

√
ĝ e4A|∂ξ|2.

Then, if one is looking for a transverse wavefunction ξ with λ = 0
as needed for massless 4D gravity, one would need ∂aξ = 0 yielding
ξ = constant, which is not normalizable in an infinite transverse
space.

The resolution of this problem requires very specific
self-adjointness features of the transverse wavefunction problem.
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Another approach: Salam-Sezgin theory and its embedding

Abdus Salam and Ergin Sezgin constructed in 1984 a version of 6D
minimal (chiral, i.e. (1,0)) supergravity coupled to a 6D 2-form
tensor multiplet and a 6D super-Maxwell multiplet which gauges
the U(1) R-symmetry of the theory. Phys.Lett. B147 (1984) 47 This
Einstein-tensor-Maxwell system has the bosonic Lagrangian

LSS = 1
2R −

1
4g2 e

σFµνF
µν − 1

6e
−2σGµνρG

µνρ − 1
2∂µσ∂

µσ − g2e−σ

Gµνρ = 3∂[µBνρ] + 3F[µνAρ]

Note the positive potential term for the scalar field σ. This is a key
feature of all R-symmetry gauged models generalizing the
Salam-Sezgin model, leading to models with noncompact
symmetries. For example, upon coupling to yet more vector
multiplets, the sigma-model target space can have a structure
SO(p, q)/(SO(p)× SO(q)).
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The Salam-Sezgin theory does not admit a maximally symmetric
6D solution, but it does admit a (Minkowski)4 × S2 solution with
the flux for a U(1) monopole turned on in the S2 directions

ds2 = ηµνdx
µdxν + a2(dθ2 + sin2 θdφ2)

Amdy
m = (n/2g)(cos θ ∓ 1)dφ
σ = σ0 = const , Bµν = 0

g2 =
eσ0

2a2
, n = ±1

This construction has been used in the SLED ↔ Supersymmetry in
Large Extra Dimensions proposal for dilution of the cosmological
constant in the two extra S2 dimensions, leaving a naturally small
residue in the four xµ dimensions.
Aghababaie, Burgess, Parameswaran & Quevedo, Nucl. Phys. B680 (2004) 389
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H(2,2) embedding of the Salam-Sezgin theory
A way to obtain the Salam-Sezgin theory from M theory was given
by Cvetič, Gibbons & Pope. Nucl. Phys. B677 (2004) 164 This employed a
reduction from 10D type IIA supergravity on the space H(2,2), or,
equivalently, from 11D supergravity on S1 ×H(2,2). The H(2,2)

space is a cohomogeneity-one 3D hyperbolic space which can be
obtained by embedding into R4 via the condition
µ2

1 + µ2
2 − µ2

3 − µ2
4 = 1. This embedding condition is SO(2, 2)

invariant, but the embedding R4 space has SO(4) symmetry, so the
isometries of this space are just SO(2, 2) ∩ SO(4) = SO(2)× SO(2).
The cohomogeneity-one H(2,2) metric is
ds2

3 = cosh 2ρdρ2 + cosh2ρdα2 + sinh2ρdβ2.

Since H(2,2) admits a natural SO(2, 2) group action, the resulting
7D supergravity theory has maximal (32 supercharge)
supersymmetry and a gauged SO(2, 2) symmetry, linearly realized
on SO(2)× SO(2). Note how this fits neatly into the general
scheme of extended Salam-Sezgin gauged models.
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The H(2,2) reduced theory in 7D can be further truncated to
minimal (16 supercharge) 7D supersymmetry, then yet further
reduced on S1/Z2 to obtain precisely the (1, 0) 6D Salam-Sezgin
gauged U(1) supergravity theory. This naturally admits the
(Minkowski)4 × S2 Salam-Sezgin “ground state” solution.
Moreover, the result of this chain of reductions from 11D or 10D is
a mathematically consistent truncation: every solution of the 6D
Salam-Sezgin theory can be lifted to an exact solution in 10D type
IIA or 11D supergravity.
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The Kaluza-Klein spectrum

Reduction on the non-compact H(2,2) space from ten to seven
dimensions, despite its mathematical consistency, does not provide
a full physical basis for compactification to 4D. The chief problem
is that the truncated Kaluza-Klein modes form a continuum
instead of a discrete set with mass gaps. Moreover, the
wavefunction of “reduced” 4D states when viewed from 10D or
11D includes a non-normalizable factor owing to the infinite H(2,2)

directions. Accordingly, the higher-dimensional supergravity theory
does not naturally localize gravity in the lower-dimensional
subspace when handled by ordinary Kaluza-Klein methods.
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Expansion about the Salam-Sezgin background
The D = 10 lift of the Salam-Sezgin “vacuum” solution yields the
metric

ds2
10 = (cosh 2ρ)1/4

[
e−

1
4 φ̄ ds̄2

6 + e
1
4 φ̄ dy2 + 1

2 ḡ
−2 e

1
4 φ̄
(
dρ2

+ 1
4 [dψ + sech2ρ(dχ− 2ḡ Ā)]2 + 1

4 (tanh 2ρ)2 (dχ− 2ḡ Ā)2
)]

Ā(1) = − 1

2ḡ
cos θ dϕ

in which the ds̄2
6 metric has Minkowski4 × S2 structure

ds̄2
6 = dxµdxνηµν +

1

8ḡ2
(dθ2 + sin2 θdϕ2)

The inclusion of gravitational fluctuations about this background is
then accomplished by replacing

ηµν −→ ηµν + hµν(x , z)

where zp are the coordinates transverse to the 4D coordinates xµ.
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Bound states and mass gaps Crampton, Pope & K.S.S.

An approach to obtaining the localization of gravity on the 4D
subspace is then to look for a normalizable transverse-space
wavefunction ξ(z) for hµν(x , z) = hµν(x)ξ(z) with a mass gap
before the onset of the continuous massive Kaluza-Klein spectrum.
This could be viewed as analogous to an effective field theory for
electrons confined to a metal by a nonzero work function.

General study of the fluctuation spectra about brane solutions
shows that the mass spectrum of the spin-two fluctuations about a
brane background is given by the spectrum of the scalar Laplacian
in the transverse embedding space of the brane
Csaki, Erlich, Hollowood & Shirman, Nucl.Phys. B581 (2000) 309; Bachas & Estes, JHEP 1106 (2011) 005

(10)F =
1√

− det g(10)

∂M

(√
− det g(10)g

MN
(10)∂NF

)
= H

1
4

SS( (4) + g24θ,φ,y ,ψ,χ + g24KK)

HSS = (cosh 2ρ)−1 warp factor; 4KK =
∂2

∂ρ2
+

2

tanh(2ρ)

∂

∂ρ
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The zp directions θ, φ, y , ψ & χ are all compact, and one can
employ ordinary Kaluza-Klein methods for reduction on them,
truncating to the invariant sector for these coordinates, but still
allowing dependence on the noncompact coordinate ρ.

To handle the noncompact direction ρ, one needs to expand all
fields in eigenmodes of 4KK:

φ(xµ, ρ) =
∑
i

φλi (x
µ)ξλi (ρ) +

∫ ∞
Λ

dλφλ(xµ)ξλ(ρ)

where the φλi are discrete eigenmodes and the φλ are the
continuous Kaluza-Klein eigenmodes. Their eigenvalues give the
Kaluza-Klein masses in 4D from (10)φλ = 0 using
4θ,φ,y ,ψ,χφλ = 0 :

4KKξλ = −λξλ
(4)φλ = (g2λ)φλ
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The Schrödinger equation for H(2,2) eigenfunctions

One can rewrite the 4KK eigenvalue problem as a Schrödinger
equation by making the substitution

Ψλ =
√

sinh(2ρ)ξλ

after which the eigenfunction equation takes the Schrödinger
equation form

−d2Ψλ

dρ2
+ V (ρ)Ψλ = λΨλ

where the potential is

V (ρ) = 2− 1

tanh2(2ρ)
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The SS Schrödinger equation potential V (ρ) asymptotes to the
value 1 for large ρ. In this limit, the Schrödinger equation becomes

d2Ψλ

dρ2
+ 4e−4ρΨλ + (λ− 1)Ψλ = 0

giving scattering-state solutions for λ > 1:

Ψλ(ρ) ∼
(
Aλe

i
√
λ−1ρ + Bλe

−i
√
λ−1ρ

)
for large ρ

while for λ < 1, one can have L2 normalizable bound states.
Recalling the ρ dependence of the measure√
−g(10) ∼ (cosh(2ρ))

1
4 sinh(2ρ), one finds for large ρ∫ ∞

ρ1�1
|Ψλ(ρ)|2dρ <∞⇒ Ψλ ∼ Bλe

−
√

1−λρ for λ < 1

So for λ < 1 we have candidates for bound states.
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The Schrödinger equation potential
The limit as ρ→ 0 of the potential V (ρ) = 2− 1/ tanh2(2ρ) is
just V (ρ) = −1/(4ρ2). The associated Schrödinger problem has a
long history as one of the most puzzling cases in one-dimensional
quantum mechanics. It has been studied and commented upon by
Von Neumann; Pauli; Case; Landau & Lifshitz; de Alfaro, Fubini &
Furlan, and many others.

The −1/4 coefficient is key to the peculiarity of this Schrödinger
problem: for coefficients α > −1/4, there is no L2 normalizable
ground state, while for α < −1/4, an infinity of L2 normalizable
discrete bound states appear.

For the precise coefficient α = −1/4, a regularized treatment
shows the existence of a single L2 normalizable bound state
separated by a mass gap and lying below the continuum of
scattering states. A.M. Essin & D.J. Griffiths, Am.J. Phys. 74, 109 (2006) The precise
eigenvalue of this ground state, however, is not fixed by
normalizability considerations and hence remains, so far, a free
parameter of the quantum theory.
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The zero-mode bound state
The Schrödinger potential V (ρ) = 2− coth2(2ρ) diverges as
ρ→ 0; this is a regular singular point of the Schrödinger equation.
Near ρ = 0, solutions have a structure given by a Frobenius
expansion

Ψλ ∼
√
ρ(Cλ + Dλ log ρ)

This behavior at the origin does not affect L2 normalizability, but it
does indicate that we have a family of candidate bound states
characterized by θ = arctan(Cλ

Dλ
).

The 1-D quantum mechanical system with a V (ρ) = 2− coth2(2ρ)
potential belongs to a special class of Pöschl-Teller integrable
systems. Neither normalizability nor self-adjointness are by
themselves sufficient to completely determine the transverse
wavefunction for the reduced effective theory, i.e. the value of the
parameter θ. A key feature of such systems, however is 1-D
supersymmetry and requiring that this be unbroken by the
transverse wavefunction Ψλ selects the value λ = 0.
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Happily, for λ = 0 the Schrödinger equation can be solved exactly.
The normalized result, corresponding to θ = 0, is

Ψ0(ρ) =
√

sinh(2ρ)ξ0(ρ) =
2
√

3

π

√
sinh(2ρ) log(tanh ρ)

0 1 2 3 4
-1.0

-0.5

0.0

0.5

1.0

H(2,2) Schrödinger equation potential (orange) and zero-mode ξ0 (purple)
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The asymptotic structure of the Salam-Sezgin background as
ρ→ 0 limits to the horizon structure of a NS-5 brane. This also
allows for the inclusion of an additional NS-5 brane source as
ρ→ 0. After such an inclusion, the zero-mode transverse
wavefunction ξ0 remains unchanged. Moreover, inclusion of such
an additional NS-5 brane does not alter the 8 unbroken space-time
supersymmetries possessed by the Salam-Sezgin background. The
NS-5 modified 10-D supergravity solution can still be given
explicitly.

NS5-brane
wrapped on H (2,2)

H(2,2) space with an NS-5 brane source wrapped around its ‘waist’
and smeared on a transverse S2
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Braneworld effective gravity

The effective action for 4D gravity reduced on the background SS
solution is obtained by letting the higher dimensional metric take
the form dŝ2 = e2A(z)(ηµν + hµν(x)ξ0(ρ))dxµdxν + ĝab(z)dzadzb,
where the warp factor A(z) and the transverse metric ĝab(z) are
given by the SS background.

Starting from the 10D Einstein gravitational action

I10 =
1

16πG10

∫
d10x

√
ĝ R̂(ĝ)

and making the reduction to 4D, one obtains at quadratic order in
hµν the linearized 4D Einstein action with a prefactor υ−2

0

Ilin 4 =
1
υ2

0

∫
d4x

(
−1

2∂σhµν∂
σhµν + 1

2∂µh
σ
σ∂

µhτ τ + ∂νhµν∂
σhµσ + hσσ∂

µ∂νhµν
)
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The normalizing factor υ0 =
(

16πG10g5

π2`y I2

) 1
2

involves the first of a

series of integrals involving products of the transverse wavefunction
ξ0. For υ0 one needs

I2 =

∫ ∞
0

dρ sinh 2ρ ξ2
0 =

π2

12

The ability to explicitly evaluate such integrals of products of
transverse wave functions is directly related to the
integrable-model Pöschl-Teller structure of the transverse
wavefunction Schrödinger equation with V (ρ) = 2− coth2(2ρ).
This is reminiscent of the way in which analogous integrals for the
hydrogen atom can be evaluated using the integrable structure
following from its SO(4) symmetry. M. Lieber, Phys.Rev. 174 (1968) 203
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In order to obtain the effective 4D Newton’s constant, one needs
to rescale hµν = υ0h̃µν in order to obtain a canonically-normalised
kinetic term for h̃µν . Then the leading effective 4D coupling
κ4 =

√
32πG4 for gravitational self-interactions is obtained from

the coefficient in front of the trilinear terms in h̃µν in the 4D
effective action.

These involve the integral

I3 =

∫ ∞
0

dρ sinh 2ρ ξ3
0 = −3ζ(3)

4
;

accordingly, the 4D Newton constant is given by

G4 =
486 ζ(3)2G10g

5

π8`y

with corresponding 4D expansion coupling

κ4 = 72
√

3ζ(3)

(
G10g

5

π7`y

) 1
2

.
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Inconsistent truncations and effective theory corrections

Note that the convergence of the I2 and I3 integrals in the
evaluation of G4 is ensured by the presence of the sinh 2ρ factor as
ρ→ 0 and by the asymptotic falloff of ξ0(ρ) as ρ→∞.

By contrast, in a standard Kaluza-Klein toroidal reduction to 4D,
the transverse wavefunction would just be ξ = const, causing the
I2 integral to diverge. This would, however, give rise to a vanishing
4D Newton constant. The standard Kaluza-Klein reduction yields
a consistent truncation Cvetič, Gibbons & Pope (2004) , but the price one pays
for this with an infinte transverse space is to have G ξ const

4 = 0.

The reduction with a normalizable transverse wavefunction ξ0(ρ)
yields an acceptably finite G4, but at the price that the reduction
does not produce a consistent truncation. This can be thought of
as a feature rather than a bug, however, as what it means is that
instead of suppressing the massive Kaluza-Klein modes, one should
properly integrate them out in evaluating the 4D effective theory.
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The Pöschl-Teller integrable structure of the transverse
Schrödinger problem enables much of this to be done explicitly.
The other ξn0 integrals needed in evaluating the leading effective
theory can also be done explicitly. One finds

In ≡
∫ ∞

0
dρ sinh 2ρ ξn0 (ρ) = (−1)n n! 2−n ζ(n)

Moreover, integrating out the continuum of massive modes also
requires performing integrals like∫ ∞

0
dρ sinh 2ρ ξn0 (ρ)ξλ(ρ)

which can also be evaluated and the results given in terms of
Legendre functions. Integrating out the ξλ contributions then
produces a series of corrections to the leading-order effective
theory.
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Life in an inconsistent truncation

The “inconsistency” of the reduction to D = 4 is revealed in the
types of corrections to the lower-dimensional effective theory that
can arise from integrating out the massive modes.

There are some similarities here to compactification on Calabi-Yau
spaces. M.J. Duff, S. Ferrara, C.N. Pope & K.S.S., Nucl.Phys. B333 (1990) 783 However, in
such CY compactifications, if one focuses on parts of the leading
order effective theory without scalar potentials, the result of
integrating out the massive KK modes is purely to generate
higher-derivative corrections to the leading order effective theory.
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In the present case, however, important corrections can be
obtained also in the leading order two-derivative part of the
effective theory. One can see this thanks to the special integrability
features of the Pöschl-Teller transverse wavefunctions, which allow
for transverse integrals actually to be done explicitly.

Note, for example that quartic terms in hµν(x) involve the integral
I4 = 4! 2−4 ζ(4). This, however, does not yet yield the expected
quartic term with a coefficient (κ4)2: I4 involves ζ(4), while (κ4)2

involves (ζ(3))2.

The deficit has to arise from the result of integrating out massive
modes such as the Kaluza-Klein vectors Hµnρ = Vµ. In a standard
compactification in which the Kaluza-Klein vectors are all paired
up with isometries of the compactifying space, such KK vectors
would form part of the massless spectrum, but this is not the case
where there is no isometry corresponding to the Vµ.
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Conclusions

• Braneworld gravity on a subsurface of the Salam-Sezgin
hyperbolic vacuum spacetime can successfully be localized
within an infinite transverse space. This is in contrast to the
situation with asymptotically maximally symmetric spacetimes
where localization has failed.

• There is a mass gap between the zero mode and the edge of
the continuous massive spectrum: gravity is localized on the
6D brane worldvolume. Further standard Kaluza-Klein
compactification to 4D then gives localized 4D braneworld
gravity.

• Such reductions involve inconsistent Kaluza-Klein truncations,
but the details of the lower dimensional effective action can
nonetheless be worked out thanks to the integrability
properties of the equivalent Schrödinger problem for the
transverse wave functions. This could lead to interesting
braneworld phenomenology.
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