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Motivation

1) Explore holographic complexity conjectures (“C = V” and “C = A”) in a simple setting

Brown et al., 1810.08741 “The Case of the Missing Gates: Complexity of Jackiw-Teitelboim Gravity”
(see also Goto et al., 1901.00014 “Holographic Complexity Equals Which Action?”)

— 1+1-dilaton gravity model

Teitelboim (1993); Jackiw (1995)
Almbheiri, Polchinski (2014); Jensen (2016); EngelsGy, Mertens, Verlinde (2016)

Maldacena, Stanford, Yang (2016); Harlow, Jafferis (2018); .....
— broken conformal symmetry —> low-energy dynamics governed by
Schwarzian effective action

— the same (broken) symmetry is realized in the SYK model
—> Schwarzian action captures important aspects of SYK dynamics

— SYK model has discrete field variables with g-local Hamiltonian
—> quantum complexity better defined than in continuum QFT

2) Explore conjectured correspondence between operator size in chaotic QFT and

radial momentum in bulk dual

- Susskind, 1802.01198 “Why do things fall?”
S ﬁ:/,,. Brown et al., Phys. Rev. D 98 (2018) 126016 “Falling Toward Charged Black Holes” 5‘5 M*.r,o
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Holographic quantum complexity

Model BH scrambling dynamics by a quantum circuit with a total number of qubits of order S

and a universal set of primitive gates.  Hayden, Preskill (2006)

The quantum complexity of a circuit state 1s the minimum number of primitive gates needed

to obtain that state from a given reference state.

AC

Assuming each qubit gets acted on by at most one primitive gate per cycle we expect A S

or, if each cycle takes of order one unit of Rindler time:

Holographic complexity conjectures:

1) Complexity equals volume C ~ G]IT/RO
Susskind (2014)
2) Complexity equals action C = ;
,l.\fft“s'~r4' Brown, Roberts, Susskind, Swingle, Zhao (2015)
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Jackiw-Teitelboim model

Action
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Field equations

AdS> geometry — (=R + %
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Global coordinates on AdS»
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Jackiw-Teitelboim black hole
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JT black hole in “Schwarzschild” coordinates

2 2 2
2 I —=Tg .2 L 2 _ r
ds® = 72 dt® + 7“2—7“1%] dr Y = QYH -

AdSs scaling:  r > A, t— At

Event horizon: r=rg .
A AN
TH N
. T — \
BH temperature: N N
h —— constant t

Relation between global time and
Schwarzschild time (at boundary):

v=0<t=0
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tan (5 + Z) =™t L O(E?) at r=rp
™
v — i§ &t — £oo

dv

= & ArT e 2™t as t— 0
s‘““s'f"o & M*.r,\o
3'{ A S w %
RS 3 o W ES
2, "N @ 7 L

%?;’g& Vi 4 o8



JT black hole thermodynamics

2 .2 L2
ds? = H gr? 2 qp?
L U
T
Y =9YH —
H

On-shell Euclidean action:
Se=pF=-5S40F
zero temperature entropy So = 2mpg

BH entropy: S = 2mpy + 4n2L2EE T
'B Almbheiri, Polchinski (2014)

Maldacena, Stanford, Yang (2016
E = 27'('2 L2 <70_31'12 g ( )

BH mass:
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“C = V" for JT black hole

Consider geodesic connecting t. and tr on

\ AN Lo g left and right boundaries and calculate the
tr,— ~——F IR geodesic length Lo inside BH.
AN “volume” of maximal slice: V(tr,tr) ~ (Gnpo) Lo
, R Vo el A
.7 AN itv: C ~ ~ 1070 transverse area
, <\ Complexity vl i7

Calculation simplifies for tL =tr=t o ( v ) ~ 2nTt

/ 2 4

gt
L0:L/ do = 2L log [tan (T + )] ~ 47LTt as t— oo

dc .
Now use S = 2rpq+O(T) — i ST atlate times (up to O(T?) terms)
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L

“C = V" on a generic slice

Geodesic connecting tr and tr

— R
sin (v —vg) = a coso

vy — VR)

YL T VR a:sin(
2

=T
Ly = —Llog (cosvr) — Llog (cosvg) + 2L1og (cos (%))

, SL dcC
Complexity C ~ S ~ ST as trppr— 00
L dtL’R




“C =A" for JT black hole

: : : A
Complexity = action conjecture C = WAW
s

— 1R

Wheeler-DeWitt patch = bulk domain of dependence of a bulk
Cauchy slice anchored at boundary

2

+<,00<1 /M de\/—_anL/aM dTK)

2

ST ZE/Mde\/—_ggo(R—F %) —!—/8Md7g0<K—i—%)

d WdW patch

K is ill-defined on null boundaries of WdW patch
— adapt prescription of Lehner et al. arXiv:1609.00207 to case at hand

Appendix C: Action User’s Manual
null boundaries

KOV gk® = K k™

gravitational action as
Sy 1= / (R—2A)\/—gdV ) )
% = k = 0 if A is affine

K d¥ — 2 X y,sign(N;) / K dSd\

We include a summary of how to evaluate the gavitational action with all its relevant contributions. We write the

OV, s, O,
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“C = A" for JT black hole - p.2

: : L . :
Geodesic null boundaries: (k7,k7) = E(SHP o,sin” o) etc.
dtr,
o . 0
Normalization condition: & - 5% —L on boundary

o A:@/d2x\/—gR+¢OZsign(mi)ami
2 /) :

1 2 :
b ool S evsminie,

1) topological terms: bulk term cancels against corner contributions

i1) remaining bulk term vanishes on shell

i11) left and right corner terms do not depend on time

1v) top and bottom corner terms grow linearly with time but they cancel at late times

The action on the WdW patch does not grow at late times!

3 . :
Qg\‘“ ',r{;,& Does this mean that “C = A4 ” fails? No, but we need to remember how
; - h‘\f‘l% the JT theory arises in the context of higher-dimensional charged BH’s
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3+1-dimensional charged BH

Our starting point is the 34+1-dimensional Einstein-Maxwell theory with action

1 1
S —/ d's V=G (R — F,F*™ | + / By v—h (K — Ky),
M 2 oM
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ml?

where ¢ = /Gy is the 3+1-dimensional Planck length

Reissner-Nordstrom black hole with electric charge @ > 0 and mass M > Q//

dr?

ds* = —f(r)dt2+f(r>—|—7“2dﬂ2,
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JT model from sphencal reduction Navarro-Salas, Navarro (1999)

1
Spherically symmetric ansatz: ds* = \/ﬁ Gas dax®dx’ + 2020 dO?

1 A
141 D metric transverse area 1s a
scalar field in 1+1 D

Inserting into original action gives 1+1 D action of an Einstein-Maxwell-Dilaton theory

1 1 4 3 1 1

S =5 / Pay/=g(PR+ 5(20)77 — - (20)2 Fop F*7) + / Ay’ /=00 (PK = 5(29)*)
The field equations of the 1+1-dimensional theory are,

0 = V, (<I>3/2FO‘B) ,

1 3
0 = R-— ﬁ(2¢)—3/2 - 562(2<I>)1/2F2,
1 1
0 = VaVs® — gus (v2q> - ﬁ@@)_m) L 2(20)3? (FmFﬂ7 _ Zgaﬁzﬂ)

The Maxwell equation determines the electromagnetic field strength in terms of the dilaton

Q (op)-3/2
isngSl‘r"," Faﬁ = 6—2(2(1)) / EapB &Q} (mff)o
; = A‘Flﬁ imww .Q‘f"(;
3)‘;&@ G:E and this can be used to eliminate the gauge field from the remaining equations 2 \5
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Spherical reduction (p.2)

Remaining field equations for the metric and dilaton

1 3%,
0 = R-;(29) 3/2+€—2(2<1>) 52

2
— _ 25 _ - S, @ —3/2
0 = VaVs® — gas (v o (20) 71/ + 25 (20) )
2
Now expand the dilaton around its value at the horizon of an extremal RN black hole: ¢ = % + ¢

and work order by order in /Q?

2 - : _N3/2
_ “ JT equations with L = /

0 = VaVgp — gag <V290 — % 90)

Q: Can the JT action be obtained by integrating out the gauge field and considering
the near-horizon limit?

A: Yes, but there is a twist.

Eliminating the gauge field from the 1+1 action, as it stands, leads to a dilaton gravity
theory but one with a wrong-sign effective potential for the dilaton.

This kind of sign flip occurs any time a dynamical variable carrying

gt“s',i»,& kinetic energy is integrated out in favor of a potential energy term. & (m"f/\o

°"'-&‘V}a S ww s

~ . . . . . x 4" -

ER P ( & The problem is solved by adding an EM boundary term to the original action. 5 % S
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Electromagnetic boundary terms

Our 3+1 D action did not have any boundary terms for the Maxwell field and Ay, 1s kept fixed
at the boundary.

In the Euclidean formalism this corresponds to a thermal ensemble at fixed chemical potential
where the total electric charge of the system is allowed to fluctuate.

Sp = BF|, = =S+ BM - 6Q
If we add the following boundary term to the action

1
Sm= — [ dyv—hi, F"A,
47T OM

then free variations of Ay at the boundary are allowed and the corresponding thermal ensemble
is that of fixed charge but varying chemical potential

5F\Q=—S+5M

with S =7Q*+4r°Q*¢T and M = % + 212 Q30 T?

Comparing expressions for JT black hole: S = 2w + 4m? L* f—BT Moy = 22 L2 ‘f_B 72
B B
2
— Yo = % and = %
*r\z{, (1) JT model describes RN black holes at fixed O & (m‘lr}%
TR E Jw i
'::(15 (2) Higher dimensional embedding provides a reference scale f_,,//} : i\g
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Electromagnetic boundary terms (p.2)

If the electromagnetic boundary term is included in the 3+1D action, then the
1+1 D action will include its spherical reduction

3 4 a
oy =0 / dy’ /=700 (29)% e F* Ag

Adding a boundary term involving the gauge field does not change its dynamical equations,
1.e. the Maxwell equations are not affected, but the boundary term contributes to the effective
dilaton potential that results from integrating out the gauge field

Write the boundary term as a 1+1-dimensional bulk term involving a total derivative,

Spoq = 82/d2$\/—gva((2¢)%Fo‘5A5)
EQ

3 Ha
= 5 [ @av=g(20)> FF,p.

This has the same form as the electromagnetic bulk term but with a coefficient in front that 1s
twice as large and of opposite sign

1 1 1 2
s S= —/de\/_—g(CIDRnt —(2B) % — Q—(zcb)—%)
2 (2 02
Q2

Now write & = — + ¢ and work order by order in ¢
S 2 JT theory & (s,
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“C = A7 revisited

The improved WdW patch action for “C =4"
calculation gives a finite growth rate at late times

2

A=A;r + % de\/—g (QCI)) —3/2

1 2
z«‘L]T—i‘@/al T\ —g
= —2Q*log(cos vg) — 2Q* log(cosvr) + . ..
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Momentum - operator size COI‘I‘GSpODdCHCG _
Susskind (2018)

Consider a black hole whose holographic dual is perturbed by a simple operator W.
In the boundary theory, the perturbation then grows with time, i.e.

W) = U@ WU
becomes an increasingly complicated operator.

If the scrambling dynamics is generated by a g-local Hamiltonian (with finite q)
then the size of W(t) will grow exponentially for some period, with a universal exponent.
I Maldacena, Shenker, Stanford (2015); Roberts, Stanford, Streicher (2018); ....

( size of a generic k-local operator: s(k) ~ O(k))

In the bulk, the perturbation W creates a particle wave-packet that then falls inwards.
As it falls towards the black hole, the particle accelerates.

Consider a 3+1 D Schwarzschild black hole and assume the initial size of W is small:
s(0)=1

Size/momentum conjecture: the size of the operator is dual to the radial momentum
of the infalling particle (as measured by a static observer at fixed radius)

s(t) ~ Rs|P(1)]

TN In Rindler region (» < 2R;) the momentum of infalling particle grows & Qs
§’(“‘1*{:«,. exponentially with Rindler time (with a universal exponent) 3 w w9 é,%
5:,'%‘; ﬁwy.;;
) ﬂ‘i‘sé P(7) ~ Eye™ Susskind (2018) s P S



Maximal operator size and BH scrambling time

The size of an operator cannot exceed the entropy S of the black hole  s(t) < S
The operator scrambling time is the time it takes to saturate this maximum size  s(t«) = S

27t
5

If s(0)=s; then s;exp ( ) =S5 and t,= ﬁlog (5/s)

2T
Maldacena, Shenker, Stanford (2015)

The initial size equals the added entropy due the initial perturbation

_om o= Dt S

$;i =08 T — :%logﬁ

: : e 1
If the particle created in the bulk has initial energy dEg ~ T then s; ~ 1

S

Scrambling appears to work differently for charged black holes.

extremal black hole entropy

/

p S =50
t, = —log .
2T 0S Leichenauer (2014)
: & (m"ffo
Are the extremal degrees of freedom somehow decoupled, leaving only the Swulped
non-extremal component to actively scramble? = = g



Falling into a charged BH

Reissner-Nordstrom black hole with electric charge @ > 0 and mass M > Q//

ds* = —f(r)dt* + d_7°2 + r?dQ)?
f(r) ’
B o r_
o) = (1-7) (1-7).
Frt Q

2 )

ry = 02M 4+ /1A M2 — 2Q?
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Apr~ry Ap ~rylog[B/ry]

: 1 —r_
Hawking temperature: T=— (7“+ 5 L )
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Radial momentum in RN background

Rindler «— &

Potential barrier at outer edge of RN throat
Particle created at top of potential barrier gains momentum falling into BH

Refined size/momentum conjecture: the size of the operator is dual to the
radial momentum of infalling particle (as measured by fiducial observer)
in units of local energy scale Brown et al. (2018)

s(t) ~ B(r) |P(t)]

B(r) is the inverse temperature of a black hole with the same charge
(but larger mass) that has its event horizon at »

Reduces to Susskind’s original conjecture for Schwarzschild BH
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Scrambling time

Rindler P

C B

A: Particle created at top of potential barrier and gains momentum falling into BH

B: Particle enters throat region: P~1/ry, By
The particle gains momentum falling: Px1/ry+t/ ri : Brt+r,
: - 5 (t+ry)?
Size of dual operator grows as particle traverses BH throat:  s(t) ~ P8 = 5
r
g
C: Particle enters Rindler region after a time of order 3 : s(B) ~ o)
_|_
2 T_2|_
Scrambling time:  —€” =25 7. = log (S5
g T?F ( 52) — T. = lo (S_SO)
) T8 TTSS
55— S — Sy~ —S
T+
J . 2 t 2 < (m‘J}
Operator size in SYK model s(t)y=1+ —B sinh [ 222 §° P ﬁw
27 o] :imww R ;
7. "% O
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X.L. Qi, A. Streicher - arXiv:1810.11958 N T o



Conclusions

Size = momentum conjecture can explain the parametrically short scrambling

time that i1s found for near-extremal RN - black holes

Both “C =V” and “C = A” give expected results for near-AdS, BH’s

— but not all actions are equal

Thank you!
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