κ-deformed BMS symmetry

Josua Unger
University of Wroclaw

February 14, 2019

Overview

(1) Introduction

- Hopf algebras
- Motivation
- κ-Poincaré algebra
(2) BMS algebra
(3) Deformation of BMS algebra
- Deformation by twisting
- Results
- Application to black hole information loss paradox

4) Outlook

Hopf algebras

- Bialgebra $(\mathcal{A}, m, \Delta, \eta, \epsilon) \equiv$ vector space with algebra and coalgebra structure
- Compatibility between these structures: Δ is algebra homomorphism or m is coalgebra homomorphism

$$
\begin{array}{r}
\Delta \circ m=m_{\mathcal{A} \otimes \mathcal{A}} \circ(\Delta \otimes \Delta)=(m \otimes m) \circ \Delta_{\mathcal{A} \otimes \mathcal{A}} \\
\epsilon \circ m=m_{\mathbb{K}} \circ(\epsilon \otimes \epsilon) \tag{2}
\end{array}
$$

- Hopf algebra $\mathcal{A} \equiv$ bialgebra with antipode

$$
\begin{equation*}
m \circ(S \otimes \mathrm{id}) \circ \Delta=\eta \circ \epsilon=m \circ(\mathrm{id} \otimes S) \circ \Delta \tag{3}
\end{equation*}
$$

Hopf algebras

- Primitive elements

$$
\begin{equation*}
\Delta(x)=\mathbb{1} \otimes x+x \otimes \mathbb{1} \Rightarrow S(x)=-x \tag{4}
\end{equation*}
$$

- Grouplike elements

$$
\begin{equation*}
\Delta(x)=x \otimes x \Rightarrow S(x)=x^{-1} \tag{5}
\end{equation*}
$$

- Dual pairing between Hopf algebras \mathcal{A}, \mathcal{B}

$$
\begin{equation*}
\left\langle a_{1} a_{2}, b\right\rangle=\left\langle a_{1} \otimes a_{2}, \Delta(b)\right\rangle \tag{6}
\end{equation*}
$$

Noncommutativity of spacetime

- Consider Hopf algebra of momenta \mathcal{P}, dual to spacetime Hopf algebra $\tilde{\mathcal{P}}$

$$
\begin{equation*}
\left\langle P_{\mu}, x^{\nu}\right\rangle=\delta_{\mu}^{\nu} \tag{7}
\end{equation*}
$$

- Induces action from \mathcal{P} on $\tilde{\mathcal{P}}$

$$
\begin{array}{r}
P_{\mu} \triangleright x^{\nu}=\left\langle P^{\mu}, x_{(1)}^{\nu}\right\rangle x_{(2)}^{\nu} \\
\Delta\left(x^{\nu}\right)=x_{(1)}^{\nu} \otimes x_{(2)}^{\nu}=x^{\nu} \otimes \mathbb{1}+\mathbb{1} \otimes x^{\nu} \tag{9}
\end{array}
$$

Noncommutativity of spacetime

- Algebra module:

$$
\begin{equation*}
P_{\mu} \triangleright\left(x^{\nu} x^{\lambda}\right)=\left(P_{\mu_{(1)}} \triangleright x^{\nu}\right)\left(P_{\mu(2)} \triangleright x^{\lambda}\right) \tag{10}
\end{equation*}
$$

- If coproduct of \mathcal{P} is not primitive/symmetric:

$$
\begin{equation*}
\Rightarrow P_{\mu} \triangleright\left[x^{\nu}, x^{\lambda}\right] \sim \frac{1}{\kappa} \neq 0 \tag{11}
\end{equation*}
$$

Noncommutativity of spacetime

- Non-trivial coalgebra structure corresponds to non-commutativity
- κ observer independent, dimension of mass
- Indicates relation to QG, also motivated by string theory/ LQG
- Basis of noncommutative field theory

Non additive momenta

- Consider representation (algebra module) of Hopf algebra \mathcal{P} on two particle Fock space

$$
\begin{array}{r}
P_{\mu}^{\mathcal{H}^{2}} \triangleright\left|p^{1}\right\rangle \otimes\left|p^{2}\right\rangle=\Delta\left(P_{\mu}^{\mathcal{H}}\right) \triangleright\left|p^{1}\right\rangle \otimes\left|p^{2}\right\rangle \\
P_{\mu}^{\mathcal{H}}\left|p^{1}\right\rangle=p_{\mu}^{1}\left|p^{1}\right\rangle \tag{13}
\end{array}
$$

- Primitive coproduct \Rightarrow Leibniz rule, otherwise momenta not additive
- In particular momenta not linearly separable

κ Poincaré algebra

- Deformation of Poincaré algebra with primitive coproduct
- "Minimal" deformation, i.e. assosciativity preserved
- time-like, space-like and light-like κ Poincaré

$$
\begin{equation*}
\left[x^{\mu}, x^{\nu}\right]=\frac{i}{\kappa}\left(\tau^{\mu} x^{\nu}-\tau^{\nu} x^{\mu}\right) \tag{14}
\end{equation*}
$$

- Light-like deformation can be obtained by twist
- Light-cone coordinates

$$
\begin{equation*}
x^{+}=x^{0}+x^{3}, \quad x^{-}=x^{0}-x^{3} \tag{15}
\end{equation*}
$$

κ Poincaré

$$
\begin{array}{r}
{\left[M_{\mu \nu}, M_{\rho \lambda}\right]=i\left(g_{\mu \lambda} M_{\nu \rho}-g_{\nu \lambda} M_{\mu \rho}+g_{\nu \rho} M_{\mu \lambda}-g_{\mu \rho} M_{\nu \lambda}\right),} \\
{\left[M_{\mu \nu}, P_{\rho}\right]=i\left(g_{\nu \rho} P_{\mu}-g_{\mu \rho} P_{\nu}\right), \quad\left[P_{\mu}, P_{\nu}\right]=0} \tag{17}
\end{array}
$$

$$
\begin{align*}
\Delta\left(P_{\mu}\right)= & P_{\mu} \otimes \Pi_{\tau}+\mathbb{1} \otimes P_{\mu}-\frac{\tau_{\mu}}{\kappa} P^{\alpha} \Pi_{\tau}^{-1} \otimes P_{\alpha}-\frac{\tau_{\mu}}{2 \kappa^{2}} C_{\tau} \Pi_{\tau}^{-1} \otimes P_{\tau} \\
\Delta\left(M_{\mu \nu}\right)= & M_{\mu \nu} \otimes \mathbb{1}+\mathbb{1} \otimes M_{\mu \nu}+\frac{1}{\kappa} P^{\alpha} \Pi_{\tau}^{-1} \otimes\left(\tau_{\nu} M_{\alpha \mu}-\tau_{\mu} M_{\alpha \nu}\right) \\
& -\frac{1}{2 \kappa^{2}} C_{\tau} \Pi_{\tau}^{-1} \otimes\left(\tau_{\mu} M_{\tau \nu}-\tau_{\nu} M_{\tau \mu}\right) \tag{19}
\end{align*}
$$

BMS algebra

- Symmetry of flat spactime: Poincaré algebra
- What is the symmetry of asymptotically flat spacetime?

$$
\begin{align*}
& d s^{2}=-d u^{2}-d u d r+2 r^{2} \gamma_{z \bar{z}} d z d \bar{z} \\
& d s^{2}=-U d u^{2}-2 e^{2 \beta} d u d r+g_{A B}\left(d \Theta^{A}+\frac{1}{2} U^{A} d u\right)\left(d \Theta^{B}+\frac{1}{2} U^{B} d u\right) \tag{21}\\
& \Theta^{A}=(z, \bar{z}) \tag{22}
\end{align*}
$$

BMS algebra

- Killing vectors of the asymptotically flat spacetime:

$$
\begin{align*}
\xi_{T, R}= & \left(T+\frac{u}{2} D^{A} R^{A}\right) \partial_{u}+\left(\left(1+\frac{u}{2 r}\right) R^{A}-\frac{u}{2 r} D^{A} D_{B} R^{B}-\frac{1}{r} D^{A} T\right) \partial_{A} \\
& +\left(-\frac{r+u}{2} D_{A} R^{A}+\frac{1}{2} D_{A} D^{A} T\right) \partial_{r} \tag{23}
\end{align*}
$$

- Lie derivative of vector fields defines Lie bracket
- Parametrize functions:

$$
\begin{equation*}
R_{n}^{z} \equiv I_{n}=-z^{n+1}, \quad R_{n}^{\bar{z}} \equiv \bar{I}_{n}=-\bar{z}^{n+1}, \quad T_{p q} \equiv \frac{z^{p} \bar{z}^{q}}{1+z \bar{z}} \tag{24}
\end{equation*}
$$

BMS algebra

$$
\begin{array}{r}
{\left[I_{m}, I_{n}\right]=(m-n) I_{m+n}, \quad\left[\bar{I}_{m}, \bar{I}_{n}\right]=(m-n) \bar{I}_{m+n}, \quad\left[I_{m}, \bar{I}_{n}\right]=0} \tag{25}\\
{\left[I, T_{m, n}\right]=\left(\frac{l+1}{2}-m\right) T_{m+l, n}, \quad\left[\bar{I}_{l}, T_{m, n}\right]=\left(\frac{l+1}{2}-n\right) T_{m, n+l}}
\end{array}
$$

- $T_{p q}$ supertranslations - related to gravitational memory effect
- I_{n}, \bar{I}_{n} superrotations - related to spin memory effect

BMS algebra

Figure: Action of a supertranslation that shifts retarded time u indepently at every angle.[Strominger, 2018]

Deformation by twisting

- Is there a straightforward way to obtain a Hopf algebra from a Lie algebra \mathcal{A} ?
- Consider universal enveloping algebra $U(\mathcal{A})$ with

$$
\begin{equation*}
\Delta_{0}(x)=\mathbb{1} \otimes x+x \otimes \mathbb{1}, \quad S_{0}(x)=-x, \quad \epsilon(x)=0 \tag{27}
\end{equation*}
$$

- Deform this trivial structure but keep assosciativity

Deformation by twisting

- Have to find invertible twisting element \mathcal{F} satisfying

$$
\begin{equation*}
\mathcal{F}_{12} \cdot\left(\Delta_{0} \otimes \mathbb{1}\right)(\mathcal{F})=\mathcal{F}_{23} \cdot\left(\mathbb{1} \otimes \Delta_{0}\right)(\mathcal{F}), \quad(\epsilon \otimes \mathrm{id}) \mathcal{F}=\mathbb{1} \tag{28}
\end{equation*}
$$

- If r-matrix exists this is guaranteed

$$
\begin{array}{r}
\mathcal{F}=\exp \left(-i \frac{1}{\kappa} M_{+i} \otimes P^{i}\right) \exp \left(-i M_{+-} \otimes \log \left(1+\frac{P_{+}}{\kappa}\right)\right) \\
\Delta(x)=\mathcal{F} \Delta_{0}(x) \mathcal{F}^{-1}, \quad S(x)=v S_{0}(x) v^{-1} \\
v=m \circ\left(\mathrm{id} \otimes S_{0}\right) \mathcal{F}, \quad v^{-1}=m \circ\left(S_{0} \otimes \mathrm{id}\right) \mathcal{F}^{-1} \tag{31}
\end{array}
$$

Results

- Express twisting element in terms of BMS generators

$$
\begin{align*}
k_{n} & =I_{n}+\bar{l}_{n}, \quad \bar{k}_{n}=-i\left(I_{n}-\bar{I}_{n}\right), \tag{32}\\
S_{m n} & =\frac{1}{2}\left(T_{m n}+T_{n m}\right), \quad A_{m n}=-\frac{i}{2}\left(T_{m n}-T_{n m}\right) \tag{33}\\
\mathcal{F} & =\exp \left(\frac{1}{\sqrt{2} \kappa}\left(i k_{1} \otimes S_{01}+i \bar{k}_{1} \otimes A_{01}\right)\right) \exp \left(-k_{0} \otimes \log \left(1+\frac{i S_{11}}{\sqrt{2} \kappa}\right)\right) \tag{34}
\end{align*}
$$

- Use Hadamar formula:

$$
\begin{equation*}
e^{A} B e^{-A}=\sum_{n=0}^{\infty} \frac{1}{n!} \underbrace{[A,[A, \ldots[A, B] . .] .}_{n \text { times }} \tag{35}
\end{equation*}
$$

Results

$$
\begin{align*}
\Delta\left(S_{p q}\right)= & \mathbb{1} \otimes S_{p q}+S_{p q} \otimes\left(\mathbb{1}+(p+q-1) \frac{P_{+}}{\kappa}\right) \\
& +\frac{i}{\sqrt{2} \kappa}(1-p)\left(A_{p+1, q} \otimes P_{2}+S_{p+1, q} \otimes P_{1}\right) \\
& +\frac{i}{\sqrt{2} \kappa}(1-q)\left(A_{p, q+1} \otimes P_{2}+S_{p, q+1} \otimes P_{1}\right)+\mathcal{O}\left(\frac{1}{\kappa^{2}}\right) \tag{36}
\end{align*}
$$

- Poincaré subalgebra forms also a sub-Hopf algebra
- Non-additiv supertransformations/momenta

Black hole information loss paradox

- Black holes evaporate via thermal Hawking radiation to unique vacuum \rightarrow Information about matter that formed the BH is lost
- Only 10 Poincaré hair + gauge charges
- Recent propossal by Hawking, Perry, Strominger [2]: BHs related by super transformation are physically inequivalent and conservation of all the corresponding "soft" charges could store information of the infalling matter
- Objection by Porrati, Bousso [3]: Soft theorems imply that the time evolution of soft d.o.f. decouples from the hard part \rightarrow no constraints on the outgoing hard modes

Application of κ-BMS

- For each supertranslation

$$
\begin{align*}
S_{m n}^{\text {tot, bh }} & =S_{m n}^{\text {tot, e }}+S_{m n}^{\text {tot, } ~} \tag{37}\\
S_{n m}^{\text {tot }}\left|P_{\mu}, 0\right\rangle^{\text {(hard })} & \otimes\left|0, S_{p q}\right\rangle^{(\text {soft })}=\Delta\left(S_{n m}\right)\left|P_{\mu}, 0\right\rangle^{(\text {hard })} \otimes\left|0, S_{p q}\right\rangle^{(\text {soft })} \tag{38}
\end{align*}
$$

- Primitive coproduct \rightarrow only Poincaré momentum conservation constrains hard modes
- κ-BMS induces mixing of hard/soft modes \rightarrow objection would be invalid

Outlook

- dual BMS algebra and interpretation
- Local finite dimensionality of the Hopf algebra, q analogue
- better understanding of "tangled soft/hard hair"
- ...

References

Andrew Strominger (2018)
Lectures of the infrared structure of gravity and gauge theory arXiv:1703.05448v2

國 A. Borowiec, L. Brocki, J. Kowalski-Glikman and J. Unger, " κ-deformed BMS symmetry "
arXiv:1811.05360
國
S. W. Hawking, M. J. Perry and A. Strominger, Phys. Rev. Lett. 116 (2016) no.23, 231301 doi:10.1103/PhysRevLett.116.231301 [arXiv:1601.00921 [hep-th]].

R R. Bousso and M. Porrati, Class. Quant. Grav. 34 (2017) no.20, 204001 doi:10.1088/1361-6382/aa8be2 [arXiv:1706.00436 [hep-th]].

