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NC spacetime ! quantum gravity

spacetime ! arena for quantum dynamics

• NC arena may provide simpler descriptions than a commutative one. E.g.

L =
F2 � ✓F̃ F F̃

1� ✓F
bL = � bF2

for slowly varying fields. The two actions are the same under Seiberg-Witten
map

bA = bA(A, ✓)

Gauge equivalence classes of bA are in 1-1 correspondence with those of A.

• T-duality symmetries, map commutative to NC gauge theories. T-duality acts
within NC gauge theories.

In these examples motivated from strings the gauge groups are U(1) and
U(n). What about SU(n), SO(n),...
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Quantum groups are defined for any simple Lie group. Are there corresponding
quantum group gauge theories?

- One way out [Wess Group] is SW map.
The NC bA = bA(A, ✓) is a power series in the generators Ta of the classical
gauge group G; bA is UEA valued.

Is it possible to give def. indep. from classical fields? More intrinsic def.?

This question gains further relevance thinking about the key role in diff. ge-
ometry of the notion of principal bundle and its associated gauge group and
connection. One would expect quantum principal bundles with quantum struc-
ture groups and quantum gauge groups.

rmk. NC Principal bundles are less understood than NC vector bundles



Princ. G-Bundle

If the bundle P �!M is a principal G-bundle:
The G-action on P , P ⇥G! P is fiber preserving
The G-action is free on P and
The G-action is transitive on the fibers
M ' P/G

i.e., the map
P ⇥G �! P ⇥M P

(p, g) 7�! (p, pg) is injective and surjective
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Description in terms of algebras

A ⇠ C1(P ) A⌦A ⇠ C1(P ⇥ P ) (Completion ⌦̂ is understood or consider
A the coordinate ring of an affine variety).

H ⇠ C1(G) A⌦H ⇠ C1(P ⇥G)

P ⇥G! P dualizes to A �! A⌦H

(p, g) 7! pg a 7! �A(a) = a0 ⌦ a1 (a0 ⌦ a1)(p, g) = a(pg)

B ⇠ C1(M) ' C1(P/G) i.e. B is the subalgebra of A ⇠ C1(P )
of functions constant along the fibers

B = AcoH = {b 2 A, �A(b) = b⌦ 1} ⇢ A

Then P ⇥G �! P ⇥M P is bijective iff

� : A⌦B A �! A⌦H

a⌦B a0 7�! aa00 ⌦ a01 is bijective

A is an H-comodule algebra because of the compatibility: �A(aã) = �A(a)�A(ã).
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Def. of Hopf-Galois extension

Let H be a Hopf algebra and A be an H-comodule algebra,

B = AcoH ⇢ A is a Hopf-Galois extension if � :A⌦BA!A⌦H is a bijection

Equivariance property of �
If H and A are commutative alg. then � is an algebra map, this is no more true in the NC case

We show that � is compatible with the H-coaction (the G-action).

A is an H-comodule, we write A 2MH

H is also an H-comodule with the Ad-action of H on H

Ad : H ! H ⌦H G⇥G! G
h 7! h2 ⌦ S(h1)h3 (g, g0) 7! g0�1g g0

Since A,H 2MH then also A⌦H 2MH , A⌦A 2MH , A⌦B H 2MH .

Hence � is an H-comodule map (it is equivariant).

Moreover � is compatible with multiplication of A⌦H and of A⌦BA from the left with elements
of A, i.e. it is a left A-module map
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Def. of Hopf-Galois extension

Let H be a Hopf algebra and A be an H-comodule algebra,

B = AcoH ⇢ A is a Hopf-Galois extension if � :A⌦BA!A⌦H is a bijection

Equivariance property of �
If H and A are commutative alg. then � is an algebra map, this is no more true in the NC case

The canonical map � is compatible with the H-coaction (the G-action).

A is an H-comodule, we write A 2MH

H is also an H-comodule with the Ad-action of H on H

Ad : H ! H ⌦H G⇥G! G
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of A, i.e. it is a left A-module map
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