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Abstract

In the spirit of the holographic correspondence, we have investigated the

relation between a D = 3+1,N = 2 AdS4 supergravity (SUGRA) theory in the

presence of a boundary of space-time developed in [L. Andrianopoli, R. D’Auria,

JHEP 1408 (2014) 012, arXiv:1405.2010 [hep-th]] and a model (AVZ) presented in

[P.D. Alvarez, M. Valenzuela, J. Zanelli, JHEP 1204 (2012) 058, arXiv:1109.3944 [hep-

th]] for a charged spin–1
2

field in 2 + 1 dimensions with OSp(2|2) symmetry,

satisfying a Super-Chern-Simons (SCS) Lagrangian, which can describe some

condensed matter systems with fermionic excitations in 2+1 dimensions, like

graphene. We have found that the constraints on the 3D boundary of D =

4,N = 2 SUGRA can be recovered as equations of motion from a 3D SUGRA

with OSp(2|2)× SO(1,2) invariance. A model where this can be explicitly

realized by means of an appropriate choice of the boundary conditions is

provided by the “ultraspinning limit” [M.M. Caldarelli, R. Emparan, M.J. Rodriguez,

JHEP 0811 (2008) 011, arXiv:0806.1954 [hep-th]] of an AdS4-Kerr black hole, an

asymptotically-AdS4 solution with an AdS3 geometry at the boundary. This

top-down approach to graphene is more predictive than the bottom-up one,

common in the holographic approach to solid state physics.
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Graphene and the Dirac equation

The graphene honeycomb lattice

Graphene is a two-dimensional layer of carbon atoms (one single

layer of graphite).

The carbon atoms in graphene form a honeycomb lattice with a

hexagonal structure, due to the sp2 orbital hybridization.

It is a bipartite lattice composed by two triangular sublattices

(sites A and sites B).
=⇒ Belonging to site

A or B defines a spin-

like quantum number:

Pseudospin, an addi-

tional quantum num-

ber on top of the ac-

tual spin.

=⇒ The spectrum is

helical.



The graphene Dirac cone

The Electron Band Structure of graphene

At the Dirac points (for a range of 1eV) the spectrum is linear:

Dirac cone: Ek = ±~c|k|

=⇒ Electrons in graphene obey the same type of equations as

relativistic Dirac massless particles with

c→ vF = 106m

s
=

c

300
Fermi velocity



“Analogue” relativity in condensed matter

Relativistic energy: Ek = ±
√

(~ck)2 + (mc2)2

If m finite
bare mass effective mass

m =⇒ m∗

Due to the interaction of the electrons with the lattice atoms,

usually m∗ ≤ m. In graphene it actually vanishes.

Graphene

Massless case:

Ek = ~|k|vF →
Ek = −~|k|vF →

Light speed Fermi velocity
c =⇒ vF



The powerful methods of the relativistic theories turn out to be
a very useful tool for exploring the special properties of graphene
possessing a two-dimensional spatially curved surface [A. Cortijo,

M. A. H. Vozmediano, Eur. Phys. J. ST 148, 83 (2007), condmat/0612623;

Nucl. Phys. B 763, 293 (2007) [Nucl. Phys. B 807, 659 (2009)], cond-

mat/0612374], including topologically non trivial cases [M. Cvetič,

G.W. Gibbons, Annals Phys. 327 (2012) 2617, arXiv:1202.2938 [hep-th]].

Viceversa, graphene has been proposed as a simple laboratory to
check gravitational cosmic phenomena like Hawking-Unruh radia-
tion [A. Iorio, G. Lambiase, Phys. Lett. B 716, 334 (2012), arXiv:1108.2340

[cond-mat.mtrlsci]], or wormholes in bilayer graphene [J. Gonzalez,

J. Herrero, Nucl.Phys. B825 (2010) 426-443, arXiv:0909.3057 [cond-mat.

mes-hall]].

In the spirit of the gauge/gravity correspondence, which relates
a gauge theory in D dimensions to a gravity theory in one dimen-
sion higher, we want to relate a Super Chern-Simons Lagrangian
yielding the graphene Dirac equation in D = 2 + 1 to an AdS4

supergravity.



Boundary behavior of N = 2, AdS4 supergravity
[L. Andrianopoli, R. D’Auria, JHEP 1408 (2014) 012, arXiv:1405.2010]

Denote by: V a the bosonic vielbein 1–form in superspace;
Ψα
A(A = 1, . . .N , α = 1, . . . ,4) the fermionic vielbein 1–form;

A(4) the D=4 gauge field; Rab the curvature;

∇(4) the SO(1,3) covariant differential.

Here a = 0, . . . ,3 are D = 4 flat space-time indices,
A = 1, . . .N labels the U(N ) R–symmetry,
α = 1, . . . ,4 is a D = 4 spinor index, omitted in the following.
Define: Rab ≡ dωab + ωac ∧ ωcb , ∇(4)V a ≡ dV a + ωab ∧ V b ,

∇(4)ΨA ≡ dΨA +
1

4
ωab Γab ∧ΨA −

1

2`
εAB A

(4) ∧ΨB .

In the presence of a boundary of space-time, local supersymmetry

invariance requires appropriate boundary conditions to be imposed:

Rab|∂M =

[
1

`2
V a ∧ V b +

1

2`
Ψ̄AΓab ∧ΨA

]
∂M

, ∇(4)V a|∂M =
i

2
Ψ̄AΓa ∧ΨA|∂M ,

dA(4)|∂M = Ψ̄A ∧ΨB εAB|∂M , ∇(4)ΨA|∂M =
i

2`
ΓaΨA ∧ V a|∂M ,

withM the four-dimensional space-time, ∂M its three-dimensional

boundary, Γa the D = 4 gamma matrices, ` the AdS4 radius.



Explicit D = 3 description: Asymptotic “ultraspinning” limit

Want: local AdS3 as effective theory on boundary ∂M at r →∞.

Fefferman-Graham parametrization: coordinates xµ̂, µ̂ = 0, . . . ,3
of M split into xµ, µ = 0,1,2 on ∂M + radial coordinate x3 = r.
AdS4 symmetry: SO(2,3)→ SO(1,1)× SO(1,2)

1–forms: Ki
± ≡

1
2

(
V i ∓ ` ω3i

)
Gravitinos: ΨA = Ψ+A + Ψ−A , Γ3Ψ±A = ±i Ψ±A .
“Ultraspinning limit” of AdS4-Kerr black-hole [M.M.Caldarelli, R. Em-
paran, M. J. Rodriguez, JHEP 0811 (2008) 011, arXiv:0806.1954 [hep-th]]:

Ki
+(x, r) =

r

`
Ei(x) + . . . , Ki

−(x, r) =
1

4

`

r
Ei(x) + . . . , V 3(r) =

`

r
dr + . . . ,

Ψ+Aµ(x, r) =

√
r

`
(ψAµ, 0) + . . . , Ψ−Aµ(x, r) =

√
`

r

(
0,
ε

2
ψAµ

)
+ . . . ,

ωij(x, r) = ωij(x) + . . . , A(4)(x, r) = εAµ(xν) dxµ + . . . .

Ellipses: subleading terms in the r →∞ limit, ε = ±1,
ψAµ = (ψAµα), α = 1,2 : D = 2 + 1 gravitini (Majorana).

Assume mass of black hole vanishes =⇒ Energy momentum ten-
sor of boundary theory vansihes [A. J. Amsel, G. Compère, Phys. Rev.

D 79 (2009) 085006, arXiv:0901.3609 [hep-th]]: Neumann condition.



Manifestly osp(2|2)(ε) × so(1,2)(−ε) covariant formulation of the
boundary theory [A. Achucarro, P. K. Townsend, Phys. Lett. B 229 (1989) 383]

Torsionful spin connections : ωij(±ε) = ωij ± ε
` Ekε

ijk = εijk ω±(ε)k ,

with covariant derivatives D(ε) and curvatures Ri(±).

Supersymmetry transformation with parameter εA:

δωi(−ε) = 0 , δωi(ε) = ε
2i

`
ε̄Aγ

iψA , δA = 2εAB ε̄AψB , δψA = D(ε)εA−
ε

2`
εAB AεB ≡ ∇(ε)εA ,

=⇒ Superalgebra osp(2|2)×so(1,2) realized as gauge symmetry.

The boundary conditions imposed by SUSY:

Ri
(ε) = i

ε

`
ψ̄Aγ

iψA ,Ri
(−ε) = 0 ,D(ε)ψA =

ε

2`
εAB AψB , dA = εABψ̄AψB

can be derived as equations of motions from the Lagrangian:

L(3) = ε
(
L(ε) − L(−ε)

)
≡ L(3)

+ − L(3)
− with

osp(2|2)(ε) SCS : L(ε) =
`

2

(
ωi(ε)dω(ε)|i −

1

3
ωi(ε)ω

j
(ε)ω

k
(ε)εijk

)
+ 2ε ψ̄A∇(ε)ψA −

ε

2`
A dA ,

so(1,2)(−ε) CS : L(−ε) =
`

2

(
ωi(−ε)dω(−ε)|i −

1

3
ωi(−ε)ω

j
(−ε)ω

k
(−ε)εijk

)
,

∇(ε)ψA ≡ (d+
1

4
ωij(ε)γij)ψA −

ε

2`
AψB εAB .



Comparison with “unconventional” supersymmetry
[L. Andrianopoli, BLC, R. D’Auria, M. Trigiante, JHEP04(2018)007, arXiv: 1801.08081]

A peculiar feature of the the AVZ model in [Alvarez, Valenzuela,

Zanelli, arXiv:1109.3944] is that the spinor 1–form associated with
the odd generator of the superalgebra is not a spin–3

2 gravitino,
but is given in terms a (N = 2) spin–1

2 field χA:

ψA = i ei γ
iχA ,

with ei a SUSY invariant 1–form space-time dreibein: δei = 0,
D̂ei = 1

` ε
ijk ej ek , D̂ covariant derivative of a torsionful conn. ωi.

In terms of the spinor χA, and identifying ωi with ωi(ε) = ωi(−), the

SCS Lagrangian of the AVZ model coincides, modulo an overall

scaling, with the SCS Lagrangian L(ε) for the choice ε = −1:

L(ε) =
`

2

(
ωi(ε)dω(ε)|i −

1

3
ωi(ε)ω

j
(ε)
ωk(ε)εijk

)
+ 2ε eiD(ε)ei χ̄AχA − 4 i ε χ̄A /∇

(ε)
χA e d3x −

ε

2`
A dA ,

where e ≡ det(eµi) and /∇(ε)
χA ≡ γi∇(ε)

i χA = /D(ε)
χA − ε

2`
AiεABγ

iχB .

The equation of motion for χA is the Dirac equation:

/∇(ε)
χA −

i

3`
εχA = 0 .

SUSY transformation of χA: δχA = − i
3γ

i∇(ε)
i εA .

Nieh-Yan-Weyl invariance =⇒ χ̄χ free constant of the model.



Some remarks

• In the AVZ model the supersymmetry algebra is realized as
a gauge symmetry with fields in the adjoint representation
=⇒ The numbers of fermions and bosons do not coincide:
“Unconventional supersymmetry” (Nonlinear realization?)

• The spacetime dreibein ei of the AVZ model does not coin-
cide with the superspace dreibein Ei. Consistency requires:

Ei = M(χ̄χ) ei , with M(χ̄χ) =

(
1 + ε

`

2
χ̄χ−

`2

4
(χ̄χ)2

)
.

=⇒ The SUSY parameter εA in D = 2 + 1 is proportional to
the propagating spinor field:

εA = iN(χ̄χ)χA , with N(χ̄χ) = βχ̄χ.

• The spinor χA is the spin–1
2 projection of the D = 2 + 1

gravitino ψA: χA = − i
3 γi e

i|µψAµ. On the other hand:

ψ+A3 =
3iε

2M(χ̄χ)

(
`

r

)5

2

(χA, 0) , ψ−A3 =
3i

M(χ̄χ)

(
`

r

)3

2

(0, χA) .

=⇒ The spinor χA is originating from the radial component
of the D = 3 + 1 gravitino field.



Summary: Our results

• In the spirit of the AdS/CFT correspondence, we have recov-
ered from a pure N = 2 AdS4 supergravity with boundary in
[Andrianopoli, D’Auria, arXiv:1405.2010] a D = 2+1 Super-Chern-
Simons theory in [Alvarez, Valenzuela, Zanelli, arXiv:1109.3944], de-
scribing the behavior of graphene near the Dirac points.

• The AVZ model displays N = 2 local supersymmetry in spite
of the absence of gravitini. The only propagating field is a
spin–1

2 Dirac spinor χA with a possible mass term determined
by the AdS3 cosmological constant. The correspondence
with D = 3 + 1 SUGRA yields an interpretation of χA in
terms of the radial component of the D = 3 + 1 gravitino.
The SUSY parameter εA in D = 2 + 1 is proportional to χA.

• Asymptotically AdS4 solutions featuring the correct boundary
geometry in the Fefferman-Graham parametrization comprise
the “ultraspinning limit” of the AdS4-Kerr black hole, or an
AdS3 slicing of AdS4 (black string) [R. Emparan, G. T. Horowitz,

R. C. Myers, JHEP 0001 (2000) 021, hep-th/9912135], with a BTZ
black hole [M. Bañados, C. Teitelboim and J. Zanelli, Phys. Rev. Lett.

69, 1849 (1992), hep-th/9204099] on the boundary.



Outlook

• Generalization to N > 2 supersymmetry

With J. Zanelli and R. Noris we are working on a generaliza-

tion to N > 2 supersymmetry of the model. This allows e.g.

the addition of a non-Abelian gauge field, and hence the sudy

of the spin-orbit interaction and the quantum spin Hall effect,

first postulated in graphene in 2005 [C.L. Kane, E.J. Mele, PRL 95

(22), 226081, arXiv:cond-mat/0411737], but more easily testable

in small gap semiconductors like Hg Te/Cd Te (mercury-

telluride/ cadmium-telluride) [M. König et al., Science Express Re-

search Articles. 318 (5851): 766770, arXiv:0710.0582 [cond-mat.mes-

hall]] with very strong spin-orbit coupling. It also allows to

make contact with the ABJM model [O. Aharony, O. Bergman,

D.L. Jafferis, J. Maldacena, JHEP, 2008 (10): 091, arXiv:0806.1218

[hep-th]].

• BRST covariant formulation

With P.A. Grassi we are giving a BRST covariant formulation

for the AVZ gauge fixing.



• Properties of topological insulators
Impurities (doping) act as conical singularities and generate
non-trivial holonomies. More in general, with R. Olea and
J. Zanelli we are studying the topological properties of the
2+1 dimensional theory, such as domain walls. Indeed, an
important feature of graphene is that the constant χ̄χ, deter-
mined in terms of the torsion, corresponds to the difference
of pseudospin occupation numbers between sites A and B,
and plays the role of a topological index. We are interested
in the behaviour of graphene at the boundary of 1+1 dimen-
sional interfaces separating regions where it jumps, breaking
the Nieh-Yan-Weyl symmetry [H.T.Nieh, M.L.Yan, Ann.Phys. 138,

237 (1982)].

• Noncommutative generalizations
Recently it has been observed [A. Iorio, P. Pais, arXiv:1902.00116

[hep-th]] that beyond the low energy approximation of linear
spectrum described by the Dirac cone, the emergent effective
theory of graphene features a certain generalization of the
uncertainty principle, compatible with a non-commutative
description.



• This top-down approach to graphene is more predictive than
the more common bottom-up one, because it is constrained
from the properties of the D = 3+1 supergravity theory. =⇒
We are discussing with the condensed matter group at the
Politecnico di Torino (F. Dolcini, F. Laviano) to see whether
it is possible to check some predictions from supergravity on
the physical properties of graphene, such as e.g. conduc-
tance, transmission coefficients, shear viscosity.

• Study of the transmission of an electron across a barrier in
graphene [M.I. Katsnelson et al., Nature Phys. 2, 620 (2006), cond-

mat/0604323; A. Calogeracos, Nature Phys. 2, 579 (2006); A.V. Shytov

et al., Phys. Rev. Lett. 101, 156804 (2008), arXiv:0808.0488 [cond-

mat.mes-hall]]. For bilayer graphene: on the supergravity side,
could it correspond to wormholes between two disjoint 2+1
boundaries of 3+1 space-time?

• Application of this formalism to Weyl semimetals, analogous
to graphene in D = 3 + 1, because it would be related to
a supergravity theory in the bulk of AdS5 [Y.M.P. Gomes, J.

A. Helayel-Neto, Phy. Lett.B:777, 2018, 275-280, arXiv:1711.03220

[hep-th]].


