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• Chern-Simons theory on a 3-manifold and the similarities 
with the bosonic string field theory (SFT).


• Integration on supermanifolds, integral, pseudo and 
differential forms, the PCO’s and the supersymmetric 
actions.


• Super-Chern-Simons theory on a (3|2)-supermanifold and the 
super SFT.


• Emergent geometric structures, the interactions terms for 
super Chern-Simons theories and the non-associative 
algebras.


• Outlook and perspectives.  
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Chern-Simons theory 
and SFT
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Chern-Simon theory on a 3-manifold

SCS =

Z

M3

Tr
�
A(1) ^ dA(1) +

2

3
A(1) ^A(1) ^A(1)

�

The topological gauge theory of Chern-Simons is described by the functional  

is built in terms of a gauge connection 

with values in the Lie algebra of a gauge group 
Products of the gauge fields correspond to the wedge products for 3d differential forms  
and as matrix multiplication for Lie-algebra valued fields. 

The integral is over the 3d manifold and the theory is able to measure   
topological characteristics of the manifold, but not the metric structures.

The EoM’s correspond to the vanishing  
curvature of the connection 
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SSFT =
⌦
�(1), Q�(1)

↵
+

2

3

⌦
�(1),�(1) ? �(1)

↵

For topological strings the BSFT action reduces to  CS theory  
for a Lagrangian submanifold. 

CS theory and bosonic SFT share several similarities 

The gauge connection is replaced by the string field 

The form degree is replaced the ghost number, the product between forms  
is replaced by the complicate Witten star product (also defined in terms of the  
underlying conformal field theory) 

The bilinear form < , > is a cyclic invariant product  
(sometimes expressed as an integral)  and replaces the integral and the  
Trace for gauge fields. 

The differential is replaced by the BRST operator
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W(�) = TrPei
H
� A(1)

A = A(1) +A(0) +A(�1) +A(�2) ⌘ C +A+A⇤ + C⇤

� =
1X

p=�1
�(p) =

0X

p=�1
�(p) +

1X

p=1

�(p) ⌘ fields + antifields

In the case of CS theory, there is no propagating d.o.f. and one can compute  
non local observables such as the Wilson loops

For SFT, there are infinite propagating d.o.f.’s and it represents off-shell realisation of first 
quantised string theory. There are several observables (not discussed in the present talk). 

BV-BRST formalism

For CS theory, the BV-BRST formalism can be constructed by considering  
a generalised form (one needs to separate between fields and antifields) 

Analogoulsy for  SFT, but with infinite components  
(in analogy with supermanifold pseudo-forms which I will discuss next) 
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Integration on 
supermanifolds
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� � �•(M)

1

Integration of Forms on Supermanifolds
Let us begin with a conventional manifold        with dimension = n, given a generic differential formM

This is a section of the exterior bundle and it can be decomposed as

! = !0 + !1 + !2 + · · ·+ !n

where the last term is the top form. Locally, a generic form can be written as 

and its integral on the manifold is 

where the second member is a Lebesgue/Riemann integral of the function built in terms of the differential form.

!(x, dx) =
nX

p=0

![µ1...µp](x)dx
µ1 . . . dxµp

Z

M
! =

Z
f(x)[dnx] , f(x) =

p
g ![µ1...µn](x)✏

µ1...µn
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Differential forms on a supermanifold

MLet us now move to supermanifolds. We denote by         a (n|m)-dimensional supermanifold 
parametrised by the local coordinates                 .

We introduce also the corresponding 1-forms                        with the properties 

Then a generic (super) form looks like 

where the components                                             are functions of the manifold coordinates. The 
indices                  are antisymmetrized while                     are symmetrized. The total form degree is 
fixed by the p + q, summing the form degree of the bosonic coordinates and the form degree of the  
fermionic ones. 

[µ1 . . . µk]

This implies that there is no upper bound to the form degree and there is no top form.  

(xµ, ✓↵)

(dxµ, d✓↵)

dxµ ^ dx⌫ = �dx⌫ ^ dxµ dxµ ^ d✓↵ = d✓↵ ^ dxµ d✓↵ ^ d✓� = d✓� ^ d✓↵

! =
k=p,l=qX

k=1,l=1

![µ1...µk](↵1...↵l)dx
µ1 ^ · · · ^ dxµkd✓↵1 ^ · · · ^ d✓↵l

![µ1...µk](↵1...↵l)(x, ✓)
(↵1 . . .↵l)
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The integrals over the fermionic coordinates (dx, θ) are Berezin integrals, over the x-coordinates are  
the usual Lebesgue/Riemann integrals, but the integral over dθ is not well defined on the superforms. 

To define the integration over dθ we need a new quantity �(d✓↵)

with the usual properties 

such that 

Z
f(d✓↵)�(d✓↵) = f(0)

d�(d✓↵) = �0(d✓)d2✓ = 0

They formally share all distributional properties of the usual Dirac delta functions.  
In addition, they are forms and therefore we can apply the usual geometric  
differential operators.
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For the Dirac delta functions we assume the following properties (distributional properties) 

d✓↵�(n)(d✓↵) = �n�(n�1)(d✓↵)

d✓↵�(d✓↵) = 0

�(d✓↵) ^ �(d✓�) = ��(d✓�) ^ �(d✓↵)

this follows by assuming an oriented integration measure.  
In this way, we see that there is an upper bound to the  
number of delta’s: the number of fermionic coordinates. 

A fundamental property is the distributional equation

In the same way, using the distributional properties of delta’s, we have that 

That equation tells us that the derivatives of delta’s carry a negative form degree.  
In this way, multiplying by dθ, it reduces the negative power. The Dirac delta has  
no form degree. 
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Now a generic (pseudo)-form can be written as 

 each pieces are differential forms with fixed form degree = p + r and picture number = s - r

A generic (p|q) form is written in terms of 

and we denote by                                the space of pseudo-forms. For q=0, we have the well-known  
 superforms, for q=m we have the integral forms and for 0< q<m, we have the space of pseudo-forms. 

⌦(p|q)(M)

! =
X

p,r,s

![µ1...µp](↵1...↵r)[↵r+1...↵s](x, ✓)dx
µ1 ^ · · · ^ dxµp ^ d✓↵1 ^ · · · ^ d✓↵r ^ �(d✓↵r+1) ^ · · · ^ �(d✓↵s)

We can apply the complete Cartan calculus (Lie derivatives, contractions, inner products….)
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Now we have the following complexes 

where all spaces are finite dimensional. The complex is not bounded from above.  
The differential d acts along the arrows. 

· · · ! ⌦(�2|m) ! ⌦(�1|m) ! · · · ! ⌦(n|m) ! 0

this is the complex of integral forms. It is unbounded from below, but it is bounded from above.  
The last space is the space of top forms. Notice that when we have the maximum number of delta’s, there is  
no room for  d✓0s

 Form complexes

0 ! ⌦(0|0) ! ⌦(1|0) ! · · · ! ⌦(n|0) ! ⌦(n+1|0) . . .
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There are additional complexes of the form: 

· · · ! ⌦(�2|q) ! ⌦(�1|q) ! · · · ! ⌦(n|q) ! . . .
which is not bounded from above nor from below. In addition, each single space is infinite dimensional  
space and their geometry is completely unknown . 

0
d−→

Z↑
...

· · · Ω(−1|s) d−→
...

Z↑
· · · Ω(−1|n) d−→

Ω(0|0) d−→ · · · Ω(r|0) · · · d−→ Ω(m|0)

Z↑↓ Y Z↑↓ Y Z↑↓ Y

...
...

...

Ω(0|s) d−→ · · · Ω(r|s) · · · d−→ Ω(m|s)

...
...

...

Z↑↓ Y Z↑↓ Y Z↑↓ Y

Ω(0|n) d−→ · · · Ω(r|n) · · · d−→ Ω(m|n)

d−→ Ω(m+1|0) · · ·
↓ Y

...
d−→ Ω(m+1|s) · · ·

...

↓ Y

d−→ 0

Fig. 1: Structure of the supercomplex of forms on a supermanifold of dimension (m|n) . The

form degree r changes going from left to right while the picture degree s changes going from up

to down. The rectangle contains the subset of the supercomplex where the various pictures are

isomorphic.

On the other hand the inverse picture changing operator Z1 ... n annihilates all elements

of Ω(•|n) but those of the form Y1 ... n ω , which are mapped back to the corresponding

r-forms ω . In conclusion the composite operators

Z1 ... n ◦ Y1 ... n : Ω((r|0)) −→ Ω((r|0)), r ≤ m ,

Y1 ... n ◦ Z1 ... n : Ω((r|n)) −→ Ω(r|n)), r ≥ 0
(3.46)

act as projectors on the s = 0 and s = n pictures respectively.

With different picture changing operators, for example Yα = θα δ(dθα∧) + dxj ∧
δ′(dθα∧) , we would obtain other correspondences between cohomology classes. Never-

theless whatever choice one makes for Y and Z , Y cannot exist for negative form degree

because Ω(r|0) = 0 with r < 0, and Z cannot exist for form degree greater than the even

dimension of the supermanifold because Ω(r|n) = 0 with r > m. The structure of the

supercomplex of forms is summarized in figure 1 . The rectangle contains the region of

Ω(•|•) with 0 < r < m where it is possible to define both Y and Z .

The most general descending picture changing operator is a combination of the Yα in

(3.40) with operators of the form dxi1 ∧ · · ·∧dxi2h+1 ∧dθα1 ∧ · · ·∧dθαk−2h−1 ∧ δ(k)(dθβ∧) ,

for example

dxi ∧ δ′(dθα∧) , dxi ∧ dθa ∧ δ′′(dθβ∧) , dxi ∧ dxj ∧ dxk ∧ δ′′′(dθα∧) ,

dxi ∧ dθα ∧ dθβ ∧ δ′′′(dθγ∧) , dxi ∧ dxj ∧ dθα ∧ dxk ∧ δ(4)(dθβ∧) .

Each d-closed combination Y of these terms realizes a cohomological map of the s-picture

to the (s+1)-picture. By multiplying n picture changing operators of order 1 one obtains

picture changing operators of order n which are combinations of objects of the form

dxi1 ∧ . . . ∧ dxik ∧ (θ1)ϵ1 · · · (θn)ϵn δ(h1)(dθ1∧) · · · δ(hn)(dθn∧) (3.47)

17

The operators Y and Z are known as Picture Changing Operators and  
act vertically in the complexes. 

In summary, we have 
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These two operators are d-closed and they are not d-exact. The Y operators are elements of the cohomology 

H
(0|m)(M)

This implies that given a pseudo form (p|q) and multiplying it by a PCO                                    
we have 

Yi = ✓i�(d✓i)

Yi : H
(p|q)(M) ! H

(p|q+1)(M)

This observation implies that if there were cohomology in a given space,  
this can be mapped into a space with another picture. Since  
the two complexes                       and                         are either bounded from  
below or from above, this means that there is no cohomology below and above.  

⌦(p|0)(M) ⌦(p|m)(M)

So, the cohomology is entirely contained into the square  
bounded by the 0-forms with 0 pictures and  
from the integral forms with n-form degree and m-picture. 

 15



Actions on supermanifolds

S =

Z

M(n|m)

L(n|0)(�, d�;V, ) ^ Y(0|m)(V, )

L(n|0)(�, d�;V, )
Geometric Lagrangian. It is a function of fields,  
their differentials, and of the supervielbein. It is a n-superform  
(differential superform)   

M(n|m) Supermanifold, which locally is described by a  
superspace with n bosonic coordinates and m fermionic coordinates

(V a, ↵) Supervielbein of the supermanifold a=1,…,n, α=1,…,m

Y(0|m)(V, ) Poincaré dual to the immersion of a bosonic submanifold  
into the supermanifold, are view as Picture Changing Operator.

n: form number          m: picture number
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S =

Z

M(n|m)

L(n|0) ^ Y(0|m)

S =

Z

Mn
bos

[dnx]L(n)(�, @�)

Choosing a suitable PCO, the geometric action  
reduces to the component action 

Y(0|m)
space�time(V, )

Choosing a manifest supersymmetric PCO,  
the geometric action reduces to the superspace action 

Y(0|m)
susy (V, )

S =

Z

R(n|m)

[dnxdm✓] bL(n)(�, @�, ✓)L(n)(�, @�) = L(n)(�, @�;V, )
���
✓=0, =0
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S =

Z

Mn
bos

[dnx]L(n)(�, @�)

Equivalence

The two actions are equivalent iff

Y(0|m)
susy (V, ) = Y(0|m)

spacetime(V, ) + d⌦(�1|m)

The action is closed under some conditions (superspace constraints).  
Note that it is n-superform, so its differential is not trivial. 

dL(n|0)(�, d�;V, ) = 0

and two different PCO’s differ by exact terms 

S =

Z

R(n|m)

[dnxdm✓] bL(n)(�, @�, ✓)
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Definition of PCO’s
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Definition of the PCO’s

Suppose to immerge a bosonic surface into a supermanifold

◆ : M(n) �! M(n|m)

in the trivial way: by setting the fermionic coordinates to zero.  
Then, its Poincaré dual is 

Y(0|m)
spacetime =

mY

↵=1

✓↵�(d✓↵)

1. It is closed 
2. It is not exact (so it belongs to a cohomology space) 
3. Any variation of the immersion is d-exact

�Y(0|m)
spacetime = d⌦(�1|m)
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Cartan calculus on supermanifolds 

d = dθαDα + (dxm + θγmdθ)∂m

Differential

Even/Odd Vector fields:     

v = vαDα + vm∂m
vα

vm
odd/even
even/odd

with

Even ιv , ι2v = 0 , Lv = dιv + ιvd

ιṽ , ι2ṽ ̸= 0 , Lṽ = dιṽ − ιṽdOdd

δ(ιṽ) =
∫ ∞

−∞
dt eitιṽ

Contraction and Lie derivatives

New differential operators (distribution-like operators acting on the space of forms) 
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Finally, following string theory suggestion, we can define our PCO Z. According to  
our notations, it decreases the picture by removing delta functions. 

• it is closed 
• it is not exact (Heaviside Theta function is not a distribution with compact support) 
• it depends upon an odd vector field D. But any variation of D, implies that Z it is exact 
• it is not a derivation with respect to the wedge product of forms 
• it acts vertically along the complexes of forms, from integral form to diff. forms 
• it can be combined with other PCO’s Z as follows  

where the odd vector fields  are linearly independent. 
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Super Chern-Simons and 
non-associative algebras
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Let us now consider the supersymmetric version of CS theory. The general  
expression is of the following form 

• The gauge connection is replaced by a (1|0) form. 
• The gauge group is still a bosonic group, the gauge connection is Lie-algebra valued. 
• The integral is over the full supermanifold according to the discussion above.  
•            is a generic PCO, which transform the action into a integral form. 

The function is related to the gauge connection using the Bianchi identities

The 3d vielbeins satisfy the following MC equations 
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• If we simplified to the an abelian gauge group, we drop the  
interaction term (and the covariant derivative from the Bianchi ids). 

• Now, we observe that any (0|2) PCO can be decomposed into a product to two  
(0|1) PCO (with the correct properties) - up to total derivatives

• Thus, we can rewrite the action by distributing the PCO’s over the fields as follows

• Finally, we can rewrite the action as follows (in terms of pseudoforms) 
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To add the interactions, we need a 2-product with the following property:

This situation has strong analogies with string theory and superstring theory  
(the ghost number has to be correctly compensated for meaningful actions. In the  
case of superstrings the picture number has the same role as here. It must be  
saturated for non-trivial contributions. In the case of g super Riemann surfaces q = 2-2g

Using the PCO Z, 

Erler, Konopka and Sachs (arXiv:1312.2948) proposed the expression

in terms of which we have 
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The 2-product of EKS is not associative 

If we identify the differential d with the 1-product, with the property 

it turns out that the 2-product satisfies 

which is the starting relation for an algebra. 
Every algebraic structure is purely based on differential forms and on the  
supergeometry I discussed. The            is extended to the whole complex of forms. 
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• We have effectively built a super CS theory with the 
interactions terms which is gauge invariant and it is written 
as an integral on a supermanifold.  


• The algebraic structures emerging from supergeometry are 
parallel to those emerging in super string field theory (see 
Erler, Konopka, Sachs) and we are able to reproduce their 
results using only the geometrical properties. 


• We extended their construction to the complete complex of 
forms with any number of fermions. 


• The algebraic properties of these new sets of forms have 
been translated into a sheaf theoretical language posing the 
construction on a very solid ground. 
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