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Puzzles of Naturalness

Some of the most fascinating open problems in modern physics
are all problems of naturalness:

• The cosmological constant problem

• The Higgs mass hierarchy problem

• in slow-roll inflation: The η problem

• The linear resistivity of strange metals, in the regime above
Tc in high-Tc superconductors [Bednorz&Müller ’86; Polchinski ’92]

The first three puzzles involve gravity; and can all be phrased as
questions about the size of various terms in the potential of a
scalar field.
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What is Naturalness?
Technical Naturalness: ’t Hooft (1979)

“The concept of causality requires that macroscopic
phenomena follow from microscopic equations.”

“The following dogma should be followed: At any energy
scale µ, a physical parameter or a set of physical parameters
αi(µ) is allowed to be very small only if the replacement
αi(µ) = 0 would increase the symmetry of the system.”

“Pursuing naturalness beyond 1000 GeV will require theories
that are immensely complex compared with some of the grand
unified schemes.”
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Example 1: Massive λφ4 in 3 + 1 dimensions.

S =
1

2

∫
d4x

(
∂µφ∂

µφ−m2φ2 − 1

12
λφ4

)
Recall technical naturalness:

λ ∼ ε, m2 ∼ µ2ε, µ ∼ m/
√
λ.

Symmetry: The constant shift φ→ φ+ a.

Example 2: Einstein gravity (with cosmological constant).

S =
1

16πGN

∫
d4x (R− 2Λ)

No known good symmetry protects small Λ:

GN ∼M−2
P , Λ ∼M2

P .
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Gravity without Relativity
(a.k.a. gravity with anisotropic scaling, or Hǒrava-Lifshitz gravity)

Gravity on spacetimes with a preferred time foliation (cf. FRW!)

Opens up the possibility of new RG fixed points, with improved
UV behavior due to anisotropic scaling.

Field theories with anisotropic scaling:

xi → λxi, t→ λzt.

z: dynamical critical exponent – characteristic of RG fixed point.
Many interesting examples in condensed matter, dynamical
critical phenomena, quantum critical systems, . . ., with
z = 1, 2, . . . , n, . . ., or fractions (z = 3/2 for KPZ surface growth

in D = 1), . . ., continous families . . .

. . . and now gravity as well, with propagating gravitons,
formulated as a quantum field theory of the metric.
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What is Multicritical Universe?

A scenario for “minimal” reconciliation of particle physics and
gravity, based on traditional principles of QFT & RG, in a
framework that can potentially be UV complete.

Ingredients:

1. Particle side: the standard model, or your favorite BSM
extension. Lorentz invariant. Already UV complete.

2. Gravity side: multicritical gravity, with anisotropic scaling in
UV (= “HL gravity”). Flows to isotropic scaling in IR.

Robust consequences:

Anisotropic scaling communicated to the particle sector only via
universal coupling to gravity.
Generic, high-energy Lorentz violations, also induced (and
suppressed) by this irrelevant coupling.
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Go “Nonrelativistic”: Aristotelian QFT

Motivation:

• inherited from nonrelativistic quantum gravity,

• new short-distance completions of relativistic QFTs,

• curiosity about new tools for technical naturalness in
Standard Model & beyond, in cosmology,

• spin-off applications to condensed matter,

• interesting from math-ph perspective,

• curiosity about how far can string & M theory extend ...
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The Aristotelian Spacetime

By the Aristotelian spacetime, we will mean RD+1 with the
Cartesian coordinates (t, xi), i = 1, . . . D, and with the flat
metric gij = δij, N = 1, Ni = 0, and with the preferred
foliation by the flat spatial slices of constant t.

By the Aristotelian symmetry, we will mean the isometries of
the Aristotelian spacetime:

xi → Λijx
j + bi, t→ t+ b.

• These are derived, as all foliation-preserving diffeomorphisms that

preserrve the metric.

• The isometries respect an emergent rest frame.

• Such spacetimes are solutions of HL gravities with zero Λ.

• Often called the “Lifshitz spacetime” in modern literature . . .
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Lifshitz or Aristotelian Spacetime?

Evgenii Mikhailovich Lifshitz (February 21, 1915 – October 29, 1985)
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Lifshitz or Aristotelian Spacetime?

History: in the mid-1960’s, Andrzej Trautman, Roger Penrose

talked about the “Aristotelian spacetime”: in Penrose’s 1968
Structure of Space-Time (Battelle Rencontres), he begins with

• Before Einstein (curved relative space-time) and Minkowski (rigid relative

space-time), there was

• Galilean spacetime (relative space and absolute time), and before that,

• Aristotelian spacetime (absolute space, absolute time)!
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Lifshitz or Aristotelian Spacetime?

Aristotle?
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Lifshitz or Aristotelian Spacetime?

Aristotle (384 – 322 BCE)
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The Aristotelian Spacetime
By the Aristotelian spacetime, we will mean RD+1 with the
Cartesian coordinates (t, xi), i = 1, . . . D, and with the flat
metric gij = δij, N = 1, Ni = 0, and with the preferred
foliation by the flat spatial slices of constant t.

By the Aristotelian symmetry, we will mean the isometries of
the Aristotelian spacetime:

xi → Λijx
j + bi, t→ t+ b.

The isometries respect an emergent rest frame.

If a QFT with Aristotelian symmetries is at an RG fixed point, it
develops an extra symmetry, anisotropic conformal symmetry:

xi → λxi, t→ λzt.
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Spontaneous Symmetry Breaking

Global internal symmetry breaking leads to Nambu-Goldstone
modes. Phenomenon is remarkably universal, across many fields
dealing with many-body systems.

But how many NG modes, and what is their low-energy
dispersion relation?

• Relativistic case: All questions answered by Goldstone’s
theorem: One NG per broken generator, gapless=massless,
z = 1 dispersion ω = k.

• Nonrelativistic case: Classify NG modes by classifying their
low-energy effective QFTs [Murayama&Watanabe, ’12,’13].

Let’s focus for definiteness on systems in Aristotelian spacetime.
Write down possible EFT’s for NG modes πI.
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Nonrelativistic Goldstone Theorem?

Assume Aristotelian symmetry. Then [Murayama&Watanabe]:
the EFTs are

S =

∫
dt dDx

(
ΩI(π)π̇I + gIJ(π)π̇Iπ̇J − hIJ(π)∂iπ

I∂iπ
J + . . .

)
.

Hence, this yields two types of NG modes:

• Type A, z = 1 dispersion ω = ck (those unpaired by Ω, with
no T-reversal breaking). As in the relativistic case, one Type A
NG mode per one broken generator.

• Type B, dispersion ω ∼ k2. Each associated with a pair of
broken symmetry generators, as paired by Ω. Minimal
T-reversal symmetry is broken.

Anything else would be fine tuning . . . or would it?
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Is there a gap in the argument? Consider z = 2 theory:

Seff =

∫
dt dDx

(
gIJ π̇

Iπ̇J − g̃IJ∆πI∆πJ−c2ĝIJ∂iπI∂iπJ
)
.

If the relevant deformation is not generated, we can have new
NG modes, with z = 2, associated with just one broken
symmetry and not a pair, and with no time reversal breaking.

Example: Start with z = 2 O(N) LSM in 3 + 1 dimensions,

Seff =

∫
dt d3x

(
φ̇ · φ̇−∆φ ·∆φ− g(φ2)2∂iφ∂iφ− . . .− λ5(φ2)5

− . . .− c2∂iφ · ∂iφ− . . .− λ(φ2)2 +m4φ2
)
.
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Naturalness of Slow NG Modes

How small is the quantum correction δc2?

Consider the LSM, for simplicity in the unbroken phase. The
first quantum correction to δc2 = 0 comes at two loops, from

∼
(
λ2

m4

)
|k|2 + . . . ,

and it is finite. What does this mean?

Assume a hidden symmetry, broken by ε at scale µ:

λ ∼ µ3ε, m4 ∼ µ4ε, c2 ∼ µ2ε.

This implies µ ∼ m/λ and c2 ∼ λ2/m4, just as we found by the
explicit calculation!
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Polynomial Shift Symmetry

So, there must be a new symmetry at play:

the “quadratic shift” symmetry

πI(t, xi)→ πI(t, xi) + aIijx
ixj + aIjx

j + a0.

Note it depends only on spatial coordinates, not on time.
compare the Galileon cosmology: linear spacetime shifts)

This construction naturally iterates:

The higher “polynomial shift symmetry,”

πI(t, xi)→ πI(t, xi) + aIj1j2...j2z−2
xj1xj2 . . . xj2z−2 + . . .

protects the ω ∼ kz low-energy dispersion for Type A modes
(and the ω ∼ k2z low-energy dispersion for Type B modes).
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Refining the Classification of
Nonrelativistic NG Modes

Refined classification of technically natural NG modes with
Aristotelian spacetime symmetries:

• Type A tower of multicritical NG modes with z = 1, 2, . . .,
until one hits against the multicritical analog of the Coleman
Hohenberg-Mermin-Wagner theorem at z = D;

• Type B tower of multicritical NG modes with z = 2, 4, . . .
(and no analog of the MCW theorem).

These IR fixed points describe the free limit of multicritical NG
modes, and imply low-energy theorems for scattering etc.

Generic interactions break the polynomial shift symmetry to the
constant shift. But: Corrections are controllably small, if
couplings are small.
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Coleman-Hohenberg-Mermin-Wagner
& Cascading Multicriticality

Recall relativistic CMW theorem: In 1 + 1 dimensions, SSB
which would require a NG mode φ can never happen, since φ
does not exist: 〈φ(0)φ(x)〉 ∼ log(µIRx).

Multicritical analog of CMW theorem: Type A D = z NG
modes do not exist as quantum objects at the fixed point.

Take say z = 3 in 3 + 1 dimensions, below some scale µ. Naive
CMW theorem: no symmetry breaking, no condensate?

Novelty: Cascading hierarchical multicriticality of NG modes.

At some physical crossover scale µIR � µ, turn on a z < 3
deformation. The theory self-regulates in IR, with
ω ∼ |k|3 + . . . µ2

IR|k|. And SSB is possible, after all!

Lab implications in condensed matter? Cosmology?
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Field Theories with Polynomial Shift
Symmetries

So, we found examples where a new symmetry

φ(t, xi)→ φ(t, xi) + aj1j2...jPx
j1xj2 . . . xjP + . . .

protects the smallness of leading terms in the dispersion
relation, and protects hierarchies.

In the examples shown, the symmetry is broken by interactions.

Now we can turn this around, and ask for the classification of
scalar theories in which the polynomial shift symmetry is exact.

This is a very cute mathematical problem!

The simplest case of linear shift is related to the Galileon.
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Polynomial Shift Invariants

It is natural to organize the invariants by their dimension at the
free RG fixed point.

Task: Classify all terms in the Lagrangian containing n fields
and ∆ ≡ 2m derivatives, invariant under the degree-P shift
symmetry up to a total derivative:

δPL = ∂iLi.

This is essentially a cohomological problem.
It defines a vector space of invariants HP,n,∆,D.

How to solve it?

use Graph Theory!
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Graph Theory

Represent each ∂i1 . . . φ . . . ∂i2mφ term by a graph:

(1) Each field φ is represented by a vertex (•);

(2) Each pair ∂i[. . .]∂i is represented by a link:

Consider only “loopless graphs” – classification up to
integration by parts.

To formulate δPL = ∂iLi, two more vertices needed:

(3) each aj1...jPx
j1 . . . xjP is represented by “⊗”;

(4) The ∂i on the RHS is represented by a “free end”: ?.
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Examples: Galileons and Beyond

Start with P = 1, linear shift symmetry.

Problem of (minimal) n-point 1-invariants is equivalent to
Galileons.

The minimal value for ∆ is ∆ = n− 1, the invariant is unique:

Ln ∝ T i1...in−1j1...jn−1 ∂i1φ∂j1φ∂i2j2φ . . . ∂in−1jn−1φ,

where

T i1...in−1j1...jn−1 = εi1...in−1kn...kD εj1...jn−1
kn...kD.

These are known (essentially in the Galileon literature).
Yet, the graph-theory representation reveals new patterns in
these 1-invariants.
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Examples: Galileons and Beyond

The n-point 1-invariants are:

L1 = φ = ,

L2 = ∂iφ∂iφ = ,

L3 = 3∂iφ∂jφ∂i∂jφ = 3 ,

L4 = 12[i][ij][jk][k] + 4[i][j][k][ijk] = 12 + 4 ,

L5 = 60[i][ij][jk][kl][l] + 60[i][ij][jkl][k][l] + 5[i][j][k][l][ijkl]

= 60 + 60 + 5 .

In graph theory, these unique 1-invariants correspond to
the sum over all (spanning) trees, with equal weight!
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Examples: Galileons and Beyond

For example, the 4-point 1-invariant L4 is:

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

= 4 + 12
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P > 0 Invariants: Superposition of Trees

Example: The most relevant quintic-shift 4-pt invariant is

4 12+ +

+++

+ +

+ +

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

108

216

144 612

288

72 216 36 72

432

72 144 144

216 72 72 432 72

72 72 216 192 108
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Cascading Multicriticality: Examples

2 + 1 dimensions:

S =
1

2

∫
dt d2x

{
φ̇2 − (∂i∂jφ)2 − c2(∂iφ)2 −m2φ2 − g(∂iφ∂iφ)2

}
g ∼ ε1, c2 ∼ ε1µ

2, m2 ∼ ε0µ
4, ε0 � ε1 � 1.

3 + 1 dimensions:

S =
1

2

∫
dt d3x

{
φ̇2 − (∂i∂j∂kφ)2 − ζ2

2(∂i∂jφ)2 − c2(∂iφ)2 −m2φ2

− λεijkε`mp∂iφ∂j∂`φ∂k∂mφ∂pφ
}

ζ2
2 ∼ ε2µ

2, λ ∼ ε1, c2 ∼ ε1µ
4, m2 ∼ ε0µ

6,

ε0 � ε1 � ε2 � 1.
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Now, Higgs Naturalness

Let’s start with a simple scalar field theory first.

Recall one of our earlier examples of a cascading hierarchy:

S =
1

2

∫
dt d3x

{
φ̇2 − (∂i∂j∂kφ)2 − ζ2

2(∂i∂jφ)2 − c2(∂iφ)2 −m2φ2

− λεijkε`mp∂iφ∂j∂`φ∂k∂mφ∂pφ
}

ζ2
2 ∼ ε2µ

2, λ ∼ ε1, c2 ∼ ε1µ
4, m2 ∼ ε0µ

6,

ε0 � ε1 � ε2 � 1.
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Quantum properties of the Model

• interaction 4-vertex: −iλ|[kpq]|2, where [kpq] ≡ εij`kipjq`.

• Nonrenormalization theorems: For λ and c2 (and no
wave-function renormalization). Proof: Simple, from the
form of the vertex.

• Renormalization of 2-point fn:

∼ A log Λ|k|6 +BΛ2|k|4;

hence, logaritmic running of ζ2
3 (so, ζ2

3 6= 1), and
quadratically divergent ζ2

2 .
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Quantum properties of the Model

• Asymptotic freedom? No; the effective coupling is λ̄ = λ/ζ2
3 ,

runs to strong.

• Vacuum instability: Theory perturbatively stable, the λ
self-interaction has energy unbounded from below. The
φ = 0 vacuum decays by tunnelling.

• Instability of φ particle: Damping. Finite life-time, ∝ λ2 (and
|k|3 at high momenta). Narrow for small λ. Classicalization?

• Difference between Aristotelian and Wilsonian observers:
Observers can differ by their definition of space vs. time.
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The O(N) Extension & Large N Limit

O(N) generalization: Promote φ→ φI, I = 1, . . . , N . There is
a unique O)(N) invariant generalization of the 4-pt λ vertex.

Large N limit: Define the ’t Hooft coupling λ′ = λN . Take
N →∞, holding λ′ fixed.

• Self-interactions: As measured by λ′, they are nonzero and
finite.

• Vacuum instability: Suppressed by 1/N .

• Particle decay: Suppressed by 1/N . (The divergent parts of
the 2-pt fn suppressed by 1/N .)

The large N limit: what is its holographic dual??
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Aristotelian, Wilsonian
and Lorentzian Observers

Different observers: Different ways how to relate space to time.

Examples:

• Aristotelian observers. Choose t and yi once and for all,
regardless of the dynamics of fields in spacetime.
Renormalization generates ζ2

3(µ), but λ(µ) = λbare. Running
dispersion relation.

• Wilsonian observers. Anticipating z ≈ 3 in UV, redefine
t̃ = t, ỹi by setting ζ2

3 = 1; equivalent to µ-dependent
rescaling of space: Running spacetime. Now φ develops an
anomalous dimension, λ(µ) depends on RG scale.



35

Aristotelian, Wilsonian
and Lorentzian Observers

. . . and finally,

• Lorentzian observers. The low-energy observer anticipates
Lorentz invariance, and sets c = 1.

This is equivalent to redefining the coordinates to
xµ =≡ (x0, xi), with x0 = t and xi = yi/c.

Dimensions: Measuring in the units of energy,

[t] = −1, [yi] = −1/3, [c] = 2/3, [xi] = −1.

Technical Naturalness: Imposed in the UV, “microscopic”
theory. Cascading hierarchy of scales is possible, protected by
the pattern of partial breakings of polynomial shift symmetries.
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The Low-Energy Lorentzian Perspective
Compare the perspective of the UV Aristotelian observer:

SUV =
1

2

∫
dt d3y

{
φ̇2 − (∂i∂j∂kφ)2 − ζ2

2(∂i∂jφ)2 − c2(∂iφ)2 +m2φ2

− gφ4 − λεijkε`mp∂iφ∂j∂`φ∂k∂mφ∂pφ
}

ζ2
2 ∼ ε2µ

2, λ ∼ ε1, c2 ∼ ε1µ
4, m2 ∼ ε0µ

6, g ∼ ε0µ
6,

ε0 � ε1 � ε2 � 1.

and the IR Lorentzian observer:

SIR =
1

2

∫
d4x

{
∇µΦ∇µΦ +m2Φ2 − λhΦ4

− ζ̃2
3(∇i∇j∇kΦ)2 − ζ̃2

2(∇i∇jΦ)2 − λ̃∇iΦ . . .Φ
}

where Φ = c3/2φ and ∇µ = ∂/∂xµ.
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The Low-Energy Lorentzian Perspective
Couplings in the IR picture, in terms of the UV variables:

m2 = m2, λh =
g

c3
, ζ̃2

3 =
1

c6
, ζ̃2

2 =
ζ2
2

c4
, λ̃ =

λ

c9
.

Recall the cascading hierarchy from the UV perspective:

ζ2
2 ∼ ε2µ

2, λ ∼ ε1, c2 ∼ ε1µ
4, m2 ∼ ε0µ

6, g ∼ ε0µ
6,

Define µ3 ≡M , translate into the IR variables:

m2 ∼ ε0M
2, λh ∼

ε0

ε
3/2
1

,

ζ̃2
3 ∼

ε2
0

ε3
1

1

m4
, ζ̃2

2 ∼
ε0ε2

ε2
1

1

m2
, λ̃ ∼ ε3

0ε2

ε
9/2
1

1

m6
.
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Technically Natural Mass Hierarchy

m2 ∼ ε0M
2, λh ∼

ε0

ε
3/2
1

,

ζ̃2
3 ∼

ε2
0

ε3
1

1

m4
, ζ̃2

2 ∼
ε0ε2

ε2
1

1

m2
, λ̃ ∼ ε3

0ε2

ε
9/2
1

1

m6
.

We want m = MEW ∼ 1TeV, M = MP ∼ 1018GeV. We also
want λh ∼ 0.1 or 1. Take the “10-20-30” model:

ε0 ∼ 10−30, ε1 ∼ 10−20, ε2 ∼ 10−10.

The nonrelativistic corrections are small,

ζ̃2
2 ∼

1

m2
, ζ̃2

3 ∼
1

m4
, λ̃ ∼ 10−10 1

m6
.



39

Fermions and Yukawa Couplings
Microscopic theory vs. low-energy relativistic picture:

∑
f

Yf

∫
d3y dt φΨ†fΨf =

∑
f

yf

∫
d4xΦψ̄fψf ,

where [Yf ] = 1, ψf = c3/2Ψf and yf = Yf/c
3/2.

Microscopic naturalness: Yf ∼ ε0µ
3? Actually, there is more

wiggling room:
ε0µ

3 ≤ Yf ≤
√
ε0µ

3.

The low-energy observer sees this window of naturalness as

ε0/ε
3/4
1 ≤ yf ≤ ε1/2

0 /ε
3/4
1 .

In the 10-20-30 model, this gives the Yukawa range
10−15 ≤ yf ≤ 1, accommodating all the fermions of the SM!
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Gauging
The grain of salt?

So far, we found the technically natural light scalar with
non-derivative self-coupling, but only in the “gaugeless” limit of
the SM.

Gauging, in the microscopic theory:

∂i → ∂i + ieAi, ∂t → ∂t + ieA0; go to A0 = 0 gauge.

Action:
∫
d3y dt ȦiȦi + . . .; implies [Ai] = 0, [e] = 1/3.

Low-energy relativistic perspective:

Ai = c3/2Ai, gYM = e/c1/2.

If e2 ∼ ε0µ
2, then g2

YM ∼ ε0/ε
1/2
1 is still way too small.

But: Bottom-up pheno approach followed by Berthier,
Grosvenor, Yan; encouraging natural hierarchy by 2 OofM.
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Conclusions I: Naturally Light Scalars.

• Technical naturalness exhibits surprising features in the
nonrelativistic settings of Aristotelian spacetime.

• We presented a new mechanism for a naturally light scalar
with non-derivative self-couping:

m2 ∼ εM2, λh ∼ ε/ε3/2
1 ,

in contrast with the relativistic naturalness:

m2 ∼ εM2, λh ∼ ε.

• The crucial new small parameter ε1 controls the size of the
speed of light in the microscopic theory with z > 1.

• Higgs phenomenology looks quite promising, a large
hierarchy with m = MEW and M = MP is possible at least
in the “gaugeless” limit of SM. All fermion masses also
natural! Need to learn more about the gauge sector.
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Can we do this with the Cosmological Constant?

Consider the Multicritical Universe scenario.

SUV =
1

κ2

∫
dt d3y

√
g
{
ġ2 − ζ2

3(∇R)2 + . . .− ζ2
2R

2 + . . .

− c2R−H2
}

+ SSM matter

What is the natural scale of gravity? Planck scale? The Hubble
scale!

Canonical dimensions around the z = 3 UV fixed point:

[κ2] = 0, [ζ2
3 ] = 0, [ζ2

2 ] = 2/3, [c2] = 4/3, [H2] = 2.

Define again the IR coordinates xi: yi = cxi, get:

SIR =
c3

κ2

∫
dt d3x

√
g
{
ġ2 − ξ2

3(∇R)2 − ξ2
2R

2 −R−H2
}
.
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Can we do this with the Cosmological Constant?
Thus, we get the low-energy Newton constant as a derived
object:

GN =
κ2

c3
.

Make a natural dynamical assumption: In the absence of fancy
symmetries, all ζ’s are set by the same scale m:

ζ2
3 ∼ 1, ζ2

2 ∼ m2/3, c2 ∼ m4/3, ζ2
0 ∼ m2 = H2

Then our expression for Newton’s constant can be written as

κ2 = GNH
2.

Fit to Nature:

MP ∼ 1018GeV, m ∼ 10−42GeV, c ∼ m2/3, κ ∼ 10−60,

and small Λ ∼ 10−120M2
P is technically natural!
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Not so fast . . . there are other constraints:

Higher-derivative corrections:

ξ2
2 ∼

ζ2
2

c4
∼ 1

m2
∼ 1

H2
,

ξ2
3 ∼

1

c6
∼ 1

m4
∼ 1

H4
,

which would lead to modifications to Newton’s law at the scale
of H!

Can we suppress such corrections?

Using weak coupling κ� 1, yes for ζ2 but not for ζ3.

In order to satisfy observational constraints, we must lower m
to the scale of current probes of Newton’s law.

This still buys us about a half of the 120 orders of magnitude!

The remaining 60 OofM still fine tuning, an additional
mechanism needed . . .
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Why Phenomenology?

Cartesian Meditations: An Introduction to Phenomenology
(Paris lectures 1929, published 1931)
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The Founding Father of Phenomenology

Edmund Husserl (April 8, 1859, in Prostějov, Moravia – 27 April 1938)
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Prostějov, Moravia, Czech Republic
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Introduction to Phenomenology

Edmund Husserl (April 8, 1859, in Prostějov, Moravia – 27 April 1938)
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Introduction to Phenomenology

Edmund Husserl (April 8, 1859, in Prostějov, Moravia – 27 April 1938)
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Back to Naturalness in Physics

In high-Tc superconductors, the phase above Tc exhibits
“unnatural” properties:

Resistivity ρ(T ) ∼ T over several orders of magnitude in
temperature:

T

T( )ρ

Use EFT: What gives ρ ∼ T? Nothing!

• Electron-phonon interactions (the main mechanism for pairing
in BCS): ρ ∼ T 5

• Electron-electron interactions: ρ ∼ T 2

• Electron-impurities: ρ ∼ const
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A Simple Model of Strange Metals

Phonons are NG modes of SSB of space translations.

Consider Debye model with multicritical phonons: ω = ζ|k|z.
Phonon spectrum cut off at the Debye frequency ω̃D.
Lower critical dimension: D = z. Density of states:

)ρ(ω

ω

ω
~

D<<ωD

ω
~

D>>ωD

ρ(ω)

ω

DDω

~
ωD=

ω

ωD

Couple to the Fermi surface, minimally:

g

∫
dt dDxQΨ†Ψ ≡ g

∫
dt dDx ∂iQiΨ

†Ψ.

This coupling breaks polynomial shift, generates relevant
deformations, and a natural pairing mechanism.
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Resistivity in Strange Metals

Transport: Use Bloch-Boltzmann theory. In metals, this gives
the Bloch-Grüneisen formula (with τ(ε) the relaxation time):

ρ ∼ 1

τ(εF)
∼
∫ εF/T

0

|gk|2n(k)k2 kdk

with n(k) =
1

exp(ωk/T )− 1
the phonon distribution function,

and gk = g
k
√
ωk

the electron-phonon vertex.

3 + 1 dimensions, z = 1 phonons: ρ ∼ T 5.
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Resistivity in Strange Metals

Transport: Use Bloch-Boltzmann theory. In metals, this gives
the Bloch-Grüneisen formula (with τ(ε) the relaxation time):

ρ ∼ 1

τ(εF)
∼
∫ εF/T

0

|gk|2n(k)k2 kdk

with n(k) =
1

exp(ωk/T )− 1
the phonon distribution function,

and gk = g
k
√
ωk

the electron-phonon vertex.

3 + 1 dimensions, general z phonons: ρ ∼ T (6−z)/z.
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Resistivity in Strange Metals

Transport: Use Bloch-Boltzmann theory. In metals, this gives
the Bloch-Grüneisen formula (with τ(ε) the relaxation time):

ρ ∼ 1

τ(εF)
∼
∫ εF/T

0

|gk|2n(k)k2 kdk

with n(k) =
1

exp(ωk/T )− 1
the phonon distribution function,

and gk = g
k
√
ωk

the electron-phonon vertex.

D + 1 dimensions, general z phonons: ρ ∼ T (3+D−z)/z.


