Fluxes, Dualities and para-Hermitian Geometry

Vincenzo Emilio Marotta

Heriot-Watt University

February 2019

Bratislava '19

based on joint work with R. Szabo arXiv:1810.03953

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへぐ

Motivation

- Global formulation of Double Field Theory [Vaisman, Freidel, Rudolph, Svoboda].
- Clear relationship with Generalized Geometry [Freidel, Rudolph, Svoboda].
- Description of geometric and non-geometric backgrounds in string theory [Hull, Reid-Edwards].

Para-Hermitian Manifolds

D-Brackets and Fluxes

Dualities for the Doubled Twisted Torus

Conclusions and Outlook

Almost Para-Hermitian Structures

Definition An almost para-Hermitian structure (M, K, η) is given by an 2*n*-dimensional manifold M, an almost para-complex structure $K \in \text{End}(TM)$ (s.t. $K^2 = 1$) and a metric η with (n, n) signature satisfying the compatibility condition

$$\eta(K(X),Y) + \eta(X,K(Y)) = 0$$

Properties:

- The eigenbundles L_+ , L_- are maximally isotropic w.r.t. η , i.e. $\eta(X, Y) = 0, \ \forall X, Y \in \Gamma(L_+) \text{ and } \forall X, Y \in \Gamma(L_-).$
- The compatibility condition induces the definition of the fundamental 2-form $\omega(X, Y) = \eta(K(X), Y)$.

Example: Cotangent Bundles

Consider π : $T^*Q \rightarrow Q$, then we have

$$0 \rightarrow V \rightarrow T(T^*Q) \rightarrow \pi^*(TQ) \rightarrow 0$$

where $V = \operatorname{Ker}(d\pi)$.

- ► A splitting C of the sequence defines $T(T^*Q) = V \oplus H_C$, with $\Gamma(H_C) = \operatorname{Span}_{C^{\infty}(M)} \{ h_i = \partial_i + C_{ij} \tilde{\partial}^j \in \Gamma(T(T^*Q)) \}.$
- K_C defined by $K_C(\Gamma(H_C)) = \Gamma(H_C)$ and $K_C(\Gamma(V)) = -\Gamma(V)$.
- K_C is compatible with the canonical symplectic 2-form ω_0 iff C is symmetric, i.e. there exists a metric η_C s.t. the compatibility condition is satisfied.

Example: Phase Space Dynamics

 $Q = \mathbb{R}^3$: configuration space of a charged particle moving in a magnetic field \mathcal{B} generated by a magnetic charge distribution.

- ► Almost para-Hermitian structure (T^*Q, K_B, η) : Splitting $T(T^*Q) = V \oplus H_B$ such that $V = Ker(d\pi)$ and $\Gamma(H_B) = \operatorname{Span}_{C^{\infty}(M)} \{h_i = \partial_i - \epsilon_{ijk} \mathcal{B}^j \tilde{\partial}^k \in \Gamma(T(T^*Q))\}.$
- K_B defined by $K_B(\Gamma(H)) = \Gamma(H)$ and $K_B(\Gamma(V)) = -\Gamma(V)$.
- Define a flat η such that $\eta(\Gamma(H), \Gamma(H)) = \eta(\Gamma(V), \Gamma(V)) = 0$.
- ► Almost symplectic 2-form $\omega_B = dq^i \wedge dp_i 2\epsilon_{ijk} \mathcal{B}^k dq^i \wedge dq^j$, gives the magnetic Poisson brackets.

Para-Hermitian Connections

Definition

A para-Hermitian connection $\nabla : \Gamma(TM) \to \Gamma(TM \otimes T^*M)$ on an almost para-Hermitian manifold (M, K, η) is a connection which preserves both η and K, i.e. $\nabla K = \nabla \eta = 0$.

The Levi-Civita connection of η is para-Hermitian iff $\omega = \eta K$ is symplectic, i.e. iff (M, K, η) is almost para-Kähler.

An almost para-Hermitian manifold with Levi-Civita connection $\mathring{\nabla}$ can always be endowed with a *canonical* para-Hermitian connection given by

$$\nabla^{c} = P_{+} \mathring{\nabla} P_{+} + P_{-} \mathring{\nabla} P_{-},$$

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

where $P_{\pm} = \frac{1}{2}(\mathbb{1} \pm K).$

D-Bracket and Fluxes

Definition

The Canonical D-Bracket on an almost para-Hermitian manifold (M, K, η) compatible with K is:

$$\eta([X, Y]_{K}^{D}, Z) = \eta(\nabla_{X}^{c} Y - \nabla_{Y}^{c} X, Z) + \eta(\nabla_{Z}^{c} X, Y)$$

such that $[\Gamma(L_{\pm}), \Gamma(L_{\pm})]^D_{\mathcal{K}} \subset \Gamma(L_{\pm}).$

Suppose (K, η) and (K', η') are almost para-Hermitian structures on M, then K' is D-integrable w.r.t. K if

$$[\Gamma(L'_{\pm}), \Gamma(L'_{\pm})]^D_K \subset \Gamma(L'_{\pm}).$$

Fluxes measure D-integrability (or lack of) of a para-Hermitian structure with respect to another one.

Deformation of Para-Hermitian Structures

Definition

A B_+ -transformation of an almost para-Hermitian structure (K, η) is an endomorphism of $TM = L_+ \oplus L_-$ given by

$$e^{B_+} = \begin{pmatrix} \mathbb{1} & 0\\ B_+ & \mathbb{1} \end{pmatrix} \in \mathcal{O}(n, n), \tag{1}$$

where $B_+: \Gamma(L_+) \to \Gamma(L_-)$ and is such that

$$\eta(B_+(X), Y) = -\eta(X, B_+(Y)) = b_+(X, Y).$$

This induces a transformation of the almost product structure:

$$K \rightarrow K_{B_+} = e^{B_+} K e^{-B_+}$$

s.t. (M, η, K_{B_+}) is another almost para-Hermitian structure with $\omega_{K_{B_+}} = \eta K_{B_+} = \omega + 2b_+.$

Example: Back to Phase Space Dynamics

- Para-Kähler structure on T^{*}Q : K₀ = ∂_i ⊗ dqⁱ − Õⁱ ⊗ dp_i and η = dqⁱ ⊗ dp_i + dp_i ⊗ dq_i given by the choice of the "zero connection", i.e. C_{ij} = 0. ω₀ is the fundamental 2-form.
- ► K_B is obtained from K_0 via a B-transformation defined by $B_+ = \epsilon_{ijk} \mathcal{B}^i \tilde{\partial}^k \otimes dq^j$.
- Almost symplectic structure: $\omega_B = \omega_0 + 2b_+$ with $b_+ = \eta B_+ = \epsilon_{ijk} \mathcal{B}^j dq^i \wedge dq^k$ and $d\omega_B = 2db_+$.
- D-Bracket and magnetic charge density:

$$[h_i, h_j]_{\mathcal{K}_0}^{\mathcal{D}} = \partial_i (\epsilon_{jkl} \mathcal{B}^l) \tilde{\partial}^k = \eta^{-1} (\mathrm{d} b_+ (h_i, h_j))$$

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

Doubled Twisted Torus

 $M = T^*H/\Lambda$, where H is the (3-dim.) Heisenberg group, $\mathfrak{h} = \text{Lie}(H)$ and Λ is a discrete cocompact subgroup of T^*H .

The para-Hermitian structure is derived from the left-invariant one on the Drinfel'd Double T^*H , i.e. $T(T^*H) \cong T^*H \times (\mathfrak{h} \ltimes \mathbb{R}^3)$ s.t. $K(Z_i) = Z_i$ and $K(\tilde{Z}^i) = -\tilde{Z}^i$, where $\{Z^i, \tilde{Z}^i\}$ is a basis of left-invariant vector fields.

The splitting of TM is induced by the one of left-invariant vector fields on T^*H .

The metric η is obtained from the duality pairing between \mathfrak{h} and \mathbb{R}^3 .

Born geometry: Riemannian metric \mathcal{H} inherited from the left-invariant Riemannian metric on T^*H such that the left-invariant basis spanning $T(T^*H)$ is orthonormal.

Nilmanifold Polarization

The splitting discussed before carries the Lie algebra structure:

$$[Z_x, Z_y] = mZ_z, \quad [Z_x, \tilde{Z}^y] = m\tilde{Z}^z, \quad [Z_z, \tilde{Z}^y] = -m\tilde{Z}^x,$$

with *m* integer.

 ${\mathcal H}$ can be written in terms of the metric

$$G = egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & -mx \ 0 & -mx & 1 + (mx)^2 \end{pmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

and the 2-form b = 0.

Q-flux:
$$[Z_x, Z_y]_{K_0}^D = mZ_z$$
.

NS-NS background with H-flux

There exists a B-transformation which maps the previous splitting into the following one:

$$[Z'_{x}, Z'_{y}] = -m\tilde{Z}'^{z}, \quad [Z'_{x}, Z'_{z}] = m\tilde{Z}'^{y}, \quad [Z'_{z}, Z'_{y}] = m\tilde{Z}'^{x}$$

 $\mathcal H$ transforms into the Riemannian metric compatible with the new splitting and can be written in terms of G = diag(1, 1, 1) and $b = mx dy \wedge dz$.

This is the T-dual background of the previous one.

H-flux:
$$[Z'_i, Z'_j]^D_{K_0} = \eta^{-1}(\mathrm{d} b(Z'_i, Z'_j)) = m \ \epsilon_{ijk} \widetilde{Z}'^k.$$

We can go on and obtain all of the T-dual backgrounds.

- Introduction of a new framework for doubled geometry.
- Interpretation of fluxes in terms of D-brackets.
- ► Natural emergence of fluxes from *B*-transformations.
- Description of T-duality for the Doubled Twisted Torus.

・ロト・日本・ヨト・ヨト・日・ つへぐ