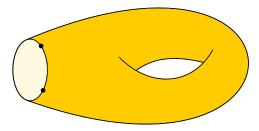
Coherent quantization of moduli spaces of flat connections

Ján Pulmann

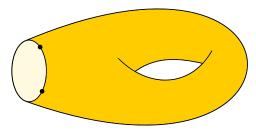
Final QSpace workshop, Bratislava, 2019

Joint work with Pavol Ševera

• Σ is a surface with boundary, $V \subset \partial \Sigma$ set of points.



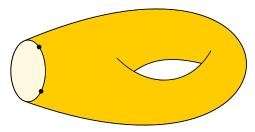
• Σ is a surface with boundary, $V \subset \partial \Sigma$ set of points.



- G is a connected Lie group, \mathfrak{g} the corresponding Lie algebra.
- The moduli space of flat connections

$$\mathcal{M}_{\Sigma,V}(G) = \frac{\{ \text{ flat connections on } \Sigma \}}{\{g: M \to G \mid g(V) = e\}}$$

• Σ is a surface with boundary, $V \subset \partial \Sigma$ set of points.



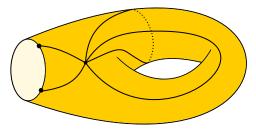
- G is a connected Lie group, \mathfrak{g} the corresponding Lie algebra.
- The moduli space of flat connections

$$\mathcal{M}_{\Sigma,V}(G) = \frac{\{ \text{ flat connections on } \Sigma \}}{\{g: M \to G \mid g(V) = e\}}$$

- Combinatorial description: enough to specify holonomies along a graph $\Gamma \subset \Sigma$ with $\Gamma \sim \Sigma$

Ján Pulmann

• Σ is a surface with boundary, $V \subset \partial \Sigma$ set of points.

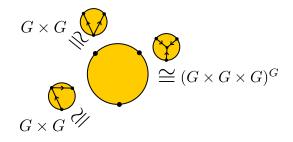


- G is a connected Lie group, \mathfrak{g} the corresponding Lie algebra.
- The moduli space of flat connections

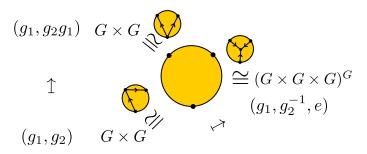
$$\mathcal{M}_{\Sigma,V}(G) = \frac{\{ \text{ flat connections on } \Sigma \}}{\{g: M \to G \mid g(V) = e\}}$$

- Combinatorial description: enough to specify holonomies along a graph $\Gamma \subset \Sigma$ with $\Gamma \sim \Sigma$

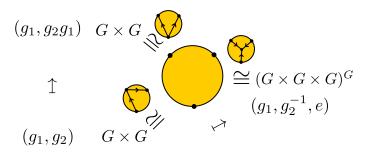
Ján Pulmann



Example



Example



• There's a residual $G^V = (G \times \cdots \times G)$ -action on $M_{\Sigma,V}(G)$, inducing $\mathfrak{g}^V = \mathfrak{g} \oplus \cdots \oplus \mathfrak{g}$ action:

$$x \in G$$
: $(g_1, g_2) \mapsto (xg_1, g_2x^{-1})$

Poisson structures on $\mathcal{M}_{\Sigma,V}(G)$

• Let's choose $t \in \operatorname{Sym}^2(\mathfrak{g})^{\mathfrak{g}}$, e.g. Killing⁻¹.

Theorem (Alekseev, Kosmann-Schwarzbach, Meinrenken) The moduli space $\mathcal{M}_{\Sigma,V}(G)$ is a \mathfrak{g}^V -quasi-Poisson manifold in a canonical way, i.e. it comes with a bivector π such that

$$[\pi,\pi]=(f^{ijk}e_i\wedge e_j\wedge e_k)_{\mathfrak{g}^V}$$

Poisson structures on $\mathcal{M}_{\Sigma,V}(G)$

• Let's choose $t \in \operatorname{Sym}^2(\mathfrak{g})^{\mathfrak{g}}$, e.g. Killing⁻¹.

Theorem (Alekseev, Kosmann-Schwarzbach, Meinrenken) The moduli space $\mathcal{M}_{\Sigma,V}(G)$ is a \mathfrak{g}^V -quasi-Poisson manifold in a canonical way, i.e. it comes with a bivector π such that

$$[\pi,\pi]=(f^{ijk}e_i\wedge e_j\wedge e_k)_{\mathfrak{g}^V}$$

- Atiyah-Bott: if $\partial \Sigma = \emptyset$, then π comes from a symplectic form.
- if $V = \emptyset$, then RHS is zero and π is Poisson

Deformation quantization

• Find an algebra $\mathcal{A}_{\Sigma} \underset{\mathrm{Vect}}{\cong} C^{\infty}(\mathcal{M}_{\Sigma,V}(G))[[\hbar]]$ with a product \star s.t.

$$a \star b = a \cdot b + \hbar \dots,$$

 $(a \star b - b \star a)/\hbar = \{a, b\} + \hbar \dots$

Deformation quantization

• Find an algebra $\mathcal{A}_{\Sigma} \underset{\mathrm{Vect}}{\cong} C^{\infty}(\mathcal{M}_{\Sigma,V}(G))[[\hbar]]$ with a product \star s.t.

$$a \star b = a \cdot b + \hbar \dots,$$

 $(a \star b - b \star a)/\hbar = \{a, b\} + \hbar \dots$

• No Jacobi for $\{,\} \implies$ no associativity for \star , but rather:

 $(\mathcal{A}_{\Sigma}, \star)$ is associative in the monoidal category $U(\mathfrak{g}^{V})$ -mod^{Φ}, where Φ is a Drinfeld associator, modifying the associativity axiom.

Context

• Previous work: Roche, Szenes; Alekseev, Grosse, Schomerus: quantization via Quantum Groups

Context

- Previous work: Roche, Szenes; Alekseev, Grosse, Schomerus: quantization via Quantum Groups
- Li-Bland, Ševera: given by *fusion* of Σ from discs with 2 marked points ~ C[∞](G):

they construct

 $\mathcal{A}_{\Sigma^{\mathrm{unfused}}} \mapsto \mathcal{A}_{\Sigma^{\mathrm{fused}}}$

Context

- Previous work: Roche, Szenes; Alekseev, Grosse, Schomerus: quantization via Quantum Groups
- Li-Bland, Ševera: given by *fusion* of Σ from discs with 2 marked points ~ C[∞](G):

they construct

 $\mathcal{A}_{\Sigma^{\mathrm{unfused}}}\mapsto \mathcal{A}_{\Sigma^{\mathrm{fused}}}$

• There are many ways to obtain the same surface by fusion.

How does \mathcal{A}_{Σ} depend on this decomposition?

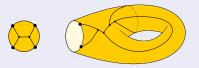
Ján Pulmann

Quantizing $\mathcal{M}_{\Sigma,V}(G)$

How does \mathcal{A}_{Σ} depend on this decomposition?

Theorem (P, Ševera)

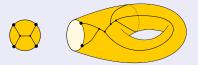
For any uni-trivalent graph $\Gamma \subset \Sigma$ such that univ.vert. $(\Gamma) = V$, there is an algebra \mathcal{A}_{Γ} quantizing $M_{\Sigma,V}(G)$. Examples of Γ :



How does \mathcal{A}_{Σ} depend on this decomposition?

Theorem (P, Ševera)

For any uni-trivalent graph $\Gamma \subset \Sigma$ such that univ.vert. $(\Gamma) = V$, there is an algebra \mathcal{A}_{Γ} quantizing $M_{\Sigma,V}(G)$. Examples of Γ :



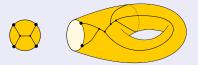
Any two such algebras are canonically isomorphic, the flip move:

corresponds to the chosen Drinfeld associator.

How does \mathcal{A}_{Σ} depend on this decomposition?

Theorem (P, Ševera)

For any uni-trivalent graph $\Gamma \subset \Sigma$ such that univ.vert. $(\Gamma) = V$, there is an algebra \mathcal{A}_{Γ} quantizing $M_{\Sigma,V}(G)$. Examples of Γ :



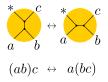
Any two such algebras are canonically isomorphic, the flip move:

corresponds to the chosen Drinfeld associator.

Corollary: mapping class group of Σ acts on \mathcal{A}_Γ

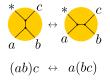
Proof: 2 ideas

• The trivalent graph Γ encodes "bracketing" of the fusion; the flip move is the rebracketing:



Proof: 2 ideas

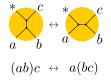
 The trivalent graph Γ encodes "bracketing" of the fusion; the flip move is the rebracketing:



 We have to modify fusion of Li-Bland and Ševera using *a* ∈ U(𝔅 ⊕ 𝔅)^𝔅: the Kontsevich integral of ⋒

Proof: 2 ideas

 The trivalent graph Γ encodes "bracketing" of the fusion; the flip move is the rebracketing:



- We have to modify fusion of Li-Bland and Ševera using *a* ∈ U(𝔅 ⊕ 𝔅)^𝔅: the Kontsevich integral of ⋒
- WIP: full functoriality under embeddings of surfaces → Ševera's quantization of Lie bialgebras.

Thank you!