Supergravity and Poisson–Lie T-duality

Jan Vysoký (in collaboration with Branislav Jurčo)

Quantum Spacetime '19 Bratislava, 11-15 February 2019

Poisson-Lie T-duality

Straightforward robbery from a work of certain Slovak mathematicians.

Definition

$(\mathfrak{d},\mathfrak{g})$ is a Manin pair when

- \mathfrak{d} is a quadratic Lie algebra, i.e. equipped with $\langle \cdot, \cdot \rangle_{\mathfrak{d}}$ bilinear, non-degenerate, symmetric and invariant;
- $\mathfrak{g} \subseteq \mathfrak{d}$ is a Lagrangian subalgebra, i.e. $\mathfrak{g} = \mathfrak{g}^{\perp}$ w.r.t. $\langle \cdot, \cdot \rangle_{\mathfrak{d}}$;
- $\mathfrak{d} = \text{Lie}(D)$, $\mathfrak{g} = \text{Lie}(G)$ for $G \subseteq D$ closed; both connected.

Quick recipe for (g, B, H) on S = D/G

- **9** Pick a maximal positive subspace $\mathcal{E}_+ \subset \mathfrak{d}$ w.r.t. $\langle \cdot, \cdot \rangle_{\mathfrak{d}}$.
- **2** Construct a trivial subbundle $\mathcal{E}_{+}^{E} = S \times \mathcal{E}_{+}$ of $E = S \times \mathfrak{d}$.
- Pick a certain bundle isomorphism Ψ_σ : TS ⊕ T*S; → E. This gives a unique closed 3-form H_σ.
- Use Ψ_{σ} to define a generalized metric $V_{+}^{\sigma} \subseteq TS \oplus T^{*}S$.
- V^{σ}_{+} uniquely determines metric g and 2-form B_{σ} on S.

Supergravity and PLT duality

String low-energy effective action or bosonic part of type II SUGRA with no RR fields is theory for (g, B, ϕ) given by:

$$S_{eff}[g, B, \phi] = \int_{S} e^{-2\phi} \{ \mathcal{R}(g) - \frac{1}{2} \langle H + dB, H + dB \rangle_{g} + 4 \langle d\phi, d\phi \rangle_{g} \} d \operatorname{vol}_{g}.$$
(1)

 $\phi \in C^{\infty}(S)$ is called the **dilaton field**.

Main Question

Is there way to construct ϕ in a similar way to (g, B, H) above, such that

- equations of motion (one loop β-equations) for (g, B, φ) would depend only on C₊ (and maybe some new data on d);
- those equations will be independent of the choice of G ⊆ D, hence compatible with PLT duality.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Can we found (g, B, ϕ) actually solving the equations?

The answer I (Ševera & Valach, 2018):

Yes, there is.

- more general setting, including RR fields;
- using Courant algebroids, divergencies and GRic;
- examples of solutions only for generalized SUGRA.

Pavol Ševera, Fridrich Valach: **Courant algebroids, Poisson-Lie T-duality, and type II supergravities**, arXiv:1810.07763

The answer II (Jurčo & Vysoký, 2018):

Yes, there is.

• no RR fields, using Courant algebroids and Levi-Civita connections;

・ 同 ト ・ ヨ ト ・ ヨ ト

3

- explicit formulas for (g, B, ϕ) and H using the rich geometrical structure of S = D/G;
- system of algebraic equations for \mathcal{E}_+ ;
- examples of solutions for ordinary SUGRA.

Definition

Let $(E, \rho, \langle \cdot, \cdot \rangle_E, [\cdot, \cdot]_E)$ be a Courant algebroid over *S*. A **Levi-Civita** connection on *E* with respect to the generalized metric $V_+ \subseteq E$ is a \mathbb{R} -bilinear map $\nabla : \Gamma(E) \times \Gamma(E) \to \Gamma(E)$, such that

•
$$\nabla_{f\psi}(\psi') = f \cdot \nabla_{\psi}(\psi')$$

• $\nabla_{\psi}(f\psi') = f \cdot \nabla_{\psi}(\psi') + \mathcal{L}_{\rho(\psi)}(f) \cdot \psi',$
where $\nabla_{\psi} \equiv \nabla(\psi, \cdot)$. Moreover, $\nabla_{\psi}(\Gamma(V_{+})) \subseteq \Gamma(V_{+})$, and ∇ is torsion
free, that is

$$0 = \langle \nabla_{\psi}(\psi') - \nabla_{\psi'}(\psi) - [\psi, \psi']_{\mathcal{E}}, \psi'' \rangle_{\mathcal{E}} + \langle \nabla_{\psi''}(\psi), \psi' \rangle_{\mathcal{E}}.$$
 (2)

The space of Levi-Civita connections $LC(E, V_+)$ is very big.

Definition

Let $\nabla \in LC(E, V_+)$. Define its **divergence** $\operatorname{div}_{\nabla} : \Gamma(E) \to C^{\infty}(S)$ as $\operatorname{div}_{\nabla}(\psi) = \operatorname{Tr}(\nabla(\cdot, \psi))$. It has the properties of divergence operator from the previous talk.

- There exists a well-defined generalized Riemann tensor $R_{\nabla} \in \mathcal{T}_4^0(E)$ with satisfactory symmetries for every $\nabla \in LC(E, V_+)$.
- It allows unambiguous definition of Ricci tensor Ric_∇ ∈ Γ(S²E^{*}):

$$\operatorname{Ric}_{\nabla}(\psi,\psi') = \operatorname{Tr}_{g_{E}}(R_{\nabla}(\cdot,\psi,\cdot,\psi')), \tag{3}$$

where $g_E = \langle \cdot, \cdot \rangle_E$. Using generalized metric $V_+ \subseteq E$, we can take its trace to obtain the scalar curvature $\mathcal{R}^+_{\nabla} \in C^{\infty}(S)$.

• We say that ∇ is **Ricci-compatible** with V_+ , if $\text{Ric}(V_+, V_-) = 0$.

Definition

Let $\phi \in C^{\infty}(S)$. We consider a subclass LC(E, V_+, ϕ) of Levi-Civita connections satisfying an additional relation for all $\psi \in \Gamma(E)$

$$\mathcal{L}_{\rho(\psi)}(\phi) = \frac{1}{2} (\operatorname{div}_{\nabla^{\mathscr{G}}}(\rho(\psi)) - \operatorname{div}_{\nabla}(\psi)), \tag{4}$$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

where $abla^g$ is the L-C connection of g corresponding to V_+ .

Theorem (Jurčo & Vysoký)

Let $\mathbb{T}S = TS \oplus T^*S$ be equipped with H-twisted Dorfman bracket. Let V_+ be a generalized metric corresponding to (g, B). Let $\nabla \in LC(\mathbb{T}S, V_+, \phi)$.

Then (g, B, ϕ) satisfy the equations of motion given by S_{eff} if and only if $\mathcal{R}^+_{\nabla} = 0$ and ∇ is Ricci-compatible with V_+ .

In fact, the action can be written as $S_{eff}[g, B, \phi] = \int_S e^{-2\phi} \mathcal{R}^+_{\nabla} \cdot d \operatorname{vol}_g$.

Theorem

Let $\nabla^0 \in LC(\mathfrak{d}, \mathcal{E}_+)$. Extend it to a connection ∇^0_E on $E = S \times \mathfrak{d}$. Use the isomorphism Ψ_σ to construct $\nabla^\sigma \in LC(\mathbb{T}S, V^\sigma_+)$. Then

• One has $\mathcal{R}^+_{\nabla^{\sigma}} = \mathcal{R}^+_{\nabla^0}$ and ∇^{σ} is Ricci-compatible with V^{σ}_+ iff ∇^0 is Ricci-compatible with \mathcal{E}_+ .

Severything will work as wanted, if we find φ ∈ C[∞](S), such that ∇^σ ∈ LC(TS, V^σ₊, φ).

Geometry of Manin pairs

For a given Manin pair $(\mathfrak{d}, \mathfrak{g})$, there is a rich geometry behind. One can consider the isotropic splittings $j : \mathfrak{g}^* \to \mathfrak{d}$ of the sequence

$$0 \longrightarrow \mathfrak{g} \xrightarrow{i} \mathfrak{d} \operatorname{\mathfrak{g}} \xrightarrow{q} \mathfrak{g}^* \longrightarrow 0, \qquad (5)$$

where q is the quotient map $\mathfrak{d} \to \mathfrak{d}/\mathfrak{g}$ combined with the identification $\mathfrak{d}/\mathfrak{g} \cong \mathfrak{g}^*$ induced by $\langle \cdot, \cdot \rangle_{\mathfrak{d}}$.

Objects induced by a choice of j

- $\mu \in \Lambda^3 \mathfrak{g}$, given by $\mu(\xi, \eta, \zeta) = \langle [j(\xi), j(\eta)]_{\mathfrak{d}}, j(\zeta) \rangle_{\mathfrak{d}};$

Not a Lie bracket. There is a bunch of relations among $[\cdot, \cdot]_{\mathfrak{g}}$, μ and $[\cdot, \cdot]_{\mathfrak{g}^*}$, making \mathfrak{g} into a **Lie quasi-bialgebra**.

There is a canonical action $\triangleright : D \times S \to S$ called the **dressing action** of D on S. Let $\#^{\triangleright} : \mathfrak{d} \to \mathfrak{X}(S)$ be the corresponding Lie algebra action.

There is also a **canonical bivector** $\Pi_{S}^{j} \in \mathfrak{X}^{2}(S)$ such that

 $\frac{1}{2}[\Pi_{\mathcal{S}}^{j},\Pi_{\mathcal{S}}^{j}] = \Lambda^{3}(\#^{\triangleright} \circ i)(\mu), \quad \mathcal{L}_{\#^{\triangleright}(\times)}\Pi_{\mathcal{S}}^{j} = \text{something interesting.}$ (6)

One says that j everywhere admissible if $\#_s^{\triangleright} \circ j : \mathfrak{g}^* \to T_s S$ is a linear isomorphism for all $s \in S$.

Properties of such j

- Vector fields ξ[▷] = #[▷](j(ξ)) globally generate 𝔅(S).
- One forms x[▷] defined by x[▷](ξ[▷]) := ξ(x) globally generate Ω¹(S).
- Define $\Pi \in C^{\infty}(S, \Lambda^2 \mathfrak{g}^*)$ as $\Pi(x, y) = \Pi_S^j(x^{\triangleright}, y^{\triangleright})$. Then

$$\xi^{\triangleright}(i(x)) = \mathbf{\Pi}(x^{\triangleright})^{\triangleright}.$$
 (7)

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

- Equivalently, the map $\mathbf{k}(d) = pr_{\mathfrak{g}} \circ \operatorname{Ad}_{d} \circ i \in \operatorname{End}(\mathfrak{g})$ is invertible.
- For each $s_0 \in S$, there exists $U \ni s_0$ and j admissible on U.

- Choosing an isotropic splitting j, \mathcal{E}_+ is uniquely encoded as a graph of an invertible constant map $E_0 : \mathfrak{g}^* \to \mathfrak{g}$.
- If g is a unimodular Lie algebra, that is Tr(ad_x) = 0, the map det(k) is G-invariant and defines a smooth map det(k) : S → R.

Theorem

Suppose the following criteria are met:

- $\nabla^0 \in \mathsf{LC}(\mathfrak{d}, \mathcal{E}_+)$ is divergence-free;
- **3** g is unimodular, that is $Tr(ad_x) = 0$;
- there exists an everywhere admissible isotropic splitting j.

Then there exists (unique up to a constant) $\phi \in C^{\infty}(S)$ and isomorphism Ψ_{σ} , such that $\nabla^{\sigma} \in LC(\mathbb{T}S, V^{\sigma}_{+}, \phi)$, given by formula

$$\phi = -\frac{1}{2}\ln(\det(\mathbf{1}_{g} - E_{0}\mathbf{\Pi})) - \frac{1}{2}\ln(\det(\mathbf{k}))$$
(8)

・ロット (四) ・ (日) ・ (日)

In fact, ϕ does not depend on j. As admissible splittings exist locally, this is a local form of a global function in the general case.

- The 3-form H_σ can be written as H_σ(ξ[▷], η[▷], ζ[▷]) = μ(ξ, η, ζ).
- Explicit formulas can be written also for g and B_{σ} , namely

$$(g+B_{\sigma})(\xi^{\triangleright},\eta^{\triangleright}) = \langle \xi, (E_0^{-1}-\mathbf{\Pi})^{-1}(\eta) \rangle.$$
(9)

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

This boils down to original expressions in PLT duality papers, where $S \cong G^*$, $\mu = 0$, ξ^{\triangleright} are right-invariant fields on G^* and $\mathbf{\Pi} = -\mathbf{\Pi}^*$.

• One can write $E_0 = g_0^{-1} + \theta_j$, where $g_0 \in S^2(\mathfrak{g}^*)$ and $\theta_j \in \Lambda^2 \mathfrak{g}$.

Theorem

The equations of motion for (g, B_{σ}, ϕ) can be rewritten as a system of algebraic equations for \mathcal{E}_+ and thus for g_0 and θ_j . For a given Manin pair $(\mathfrak{d}, \mathfrak{g})$, the isotropic splitting j can be chosen conveniently to control μ and $[\cdot, \cdot]_{\mathfrak{g}^*}$.

Important question

Has the system for \mathcal{E}_+ any solutions whatsoever? If not, the whole method is a failure.

Example

- Choose $\mathfrak{d} = \mathfrak{g} \oplus \mathfrak{g}^*$, where $(\mathfrak{g}, [\cdot, \cdot]_\mathfrak{g})$ is Abelian.
- Fix the isotropic splitting $j(\xi) = (0, \xi)$.
- Assume that with respect to this splitting, μ = 0 and [·, ·]_{g*} is the 3-dimensional Heisenberg Lie algebra on g*. In fact, this choice renders j everywhere admissible.
- The integrating (D, G) is $D = \mathfrak{g} \rtimes H_3(\mathbb{R})$, $S \cong H_3(\mathbb{R})$.

Solution

There exists a solution for \mathcal{E}_+ , if we relax the positivity condition (this is in fact relevant for physics). In standard $H^3(\mathbb{R})$ coordinates $(\alpha^1, \alpha^2, \alpha^3)$, we plug the solution into the formulas and obtain a metric

$$g = \pm d\alpha^2 \otimes d\alpha^2 + d\alpha^1 \otimes d\alpha^3 + d\alpha^3 \otimes d\alpha^1 - \alpha_3 (d\alpha^2 \otimes d\alpha^3 + d\alpha^3 \otimes d\alpha^2)$$

One has $H_{\sigma} = 0$ and B_{σ} can be arbitrary right-invariant. Dilaton formula gives $\phi = 0$. Not very surprising as $dB_{\sigma} = 0$ and g is flat.

Branislav Jurčo, Jan Vysoký: Effective actions for σ -models of Poisson–Lie type, to appear soon,

Branislav Jurčo, Jan Vysoký: **Poisson-Lie T-duality of String Effective Actions: A New Approach to the Dilaton Puzzle**, arXiv:1708.04079,

Branislav Jurčo, Jan Vysoký: Courant Algebroid Connections and String Effective Actions, arXiv:1612.0154.

Thank you for your attention!

< = > < = >